[region-isolation] When changing an elements region, if that element was the last element in a transferred regionl, remove that region from the transferredOpMap.
This wasn't consistently used, and consequently
could result in some expressions getting their
parents invalidated. Instead, replace it with a
query to make sure we don't try and add an
expression we've already computed the parent info
for.
Remove this bit from function decls and closures.
Instead, for closures, infer it from the presence
of a single return or single expression AST node
in the body, which ought to be equivalent, and
automatically takes result builders into
consideration. We can also completely drop this
query from AbstractFunctionDecl, replacing it
instead with a bit on ReturnStmt.
Don't use strcmp to compare the candidate key with the search key, as the search key may not be NUL terminated. Use strncmp and a length check on the candidate key.
Not quite NFC because apparently the representation bleeds into what's
accepted in some situations where we're supposed to be warning about
conflicts and then making an arbitrary choice. But what we're doing
is nonsense, so we definitely need to break behavior here.
This is setting up for isolated(any) and isolated(caller). I tried
to keep that out of the patch as much as possible, though.
This library uses GenericMetadataBuilder with a ReaderWriter that can read data and resolve pointers from MachO files, and emit a JSON representation of a dylib containing the built metadata.
We use LLVM's binary file readers to parse the MachO files and resolve fixups so we can follow pointers. This code is somewhat MachO specific, but could be generalized to other formats that LLVM supports.
rdar://116592577
A swiftmodule can only be correctly ingested by a compiler
that has a matching state of using or not-using
NoncopyableGenerics.
The reason for this is fundamental: the absence of a Copyable
conformance in the swiftmodule indicates that a type is
noncopyable. Thus, if a compiler with NoncopyableGenerics
reads a swiftmodule that was not compiled with that feature,
it will think every type in that module is noncopyable.
Similarly, if a compiler with NoncopyableGenerics produces a
swiftmodule, there will be Copyable requirements on each
generic parameter that the compiler without the feature will
become confused about.
The solution here is to trigger a module mismatch, so that
the compiler re-generates the swiftmodule file using the
swiftinterface, which has been kept compatible with the compiler
regardless of whether the feature is enabled.
Remove keypath subtype asserts; always use cached root type
Add tests for keypaths converted to funcs with inout param
Add unit test for overload selection
When loading input from CAS, `swift-frontend` relies on the input file
name to determine the type to look from CAS entry. In the case where
file extension is `.private.swiftinterface`, swift mis-identify that as
`.swiftinterface` file and look up the wrong input file. Add a new
file type lookup function that can figure out the type from the full
filename.
Also add few diagnostics during the CAS lookup for the input file to
error out immediately, rather than rely on the lookup failure later.
For calloc, the variable denoting the of elements comes first,
then the variable denoting the size of each element. However, both
arguments are swapped when calling this function in many places in this codebase.
Previously, 'IntroducerLoc' and 'ThePattern' were only used for pattern
binidng cases. Create a new 'ConditionalPatternBindingInfo' type to
cover such cases, and make 'StmtConditionElement' a pure 'PointerUnion'
type.
This makes it clear which fields are used in which condition kind. Also,
we can expect overall size reduction of StmtCondition when the
majority of the conditions are simple boolean expressions.
We should have some tests for the heap functions. Note that these
wouldn't have caught the problem that we fixed in the previous
commit, because the conditions under which they run presently mean
that the problematic code wouldn't have been active. They will
*eventually* test that code, however.
rdar://119137861
Previously I avoided doing this since the only problem would be that in a case
where we had two transfer instructions that were in an if-else block, we would
just emit an error for one:
```swift
if boolValue {
transfer(x)
} else {
transfer(x) // Only emit error for this transfer!
}
useValue(x)
```
Now that we are tracking at the transfer point if any element in the transfer
was captured in a closure, this becomes an actual semantic issue since if we
track the transfer instruction that isn't reachable from the closure capture, we
will not become more pessimistic:
```swift
if boolValue {
closure = { useInOut(&x) }
transfer(x)
} else {
transfer(x)
}
// Since we grab from the else block, sendableField is allowed to be accessed
// since we do not track that x was captured by reference in a closure.
x.sendableField
useValue(x)
```
To be truly safe, we need to emit both errors.
rdar://119048779
If the var is captured in a closure before it is transferred, it is not safe to
access the Sendable field since we may race on accessing the field with an
assignment to the field in another concurrency domain.
rdar://115124361
Specifically:
1. If the value is transferred such that it becomes part of an actor region, the
value is permanently part of the actor region as one would normally have.
2. If the value is just used in an async let or is used by a nonisolated async
function within the async let then while the async let is alive it cannot be
used. But once the async let has been awaited upon, we allow for it to be used
again.
rdar://117506395
This is another NFC refactor in preparation for changing how we emit
errors. Specifically, we need access to not only the instruction, but also the
specific operand that the transfer occurs at. This ensures that we can look up
the specific type information later when we emit an error rather than tracking
this information throughout the entire pass.
What this does is really split the one dataflow we are performing into two
dataflows we perform at the same time. The first dataflow is the region dataflow
that we already have with transferring never occurring. The second dataflow is a
simple gen/kill dataflow where we gen on a transfer instruction and kill on
AssignFresh. What it tracks are regions where a specific element is transferred
and propagates the region until the element is given a new value. This of course
means that once the dataflow has converged, we have to emit an error not if the
value was transferred, but if any value in its region was transferred.
Specifically:
1. I changed Partition::apply so that it has an emitLog flag. The reason why I
did this is we run apply in a few different situations sometimes when we want to
emit logging other times when we really don't. For instance, we want to emit
logging when walking instructions and updating the entry partition. On the other
hand, we do not want to emit logging if we apply a value to a partition while
attempting to determine why an error needed to be emitted.
2. When we create an assign partition op and we see that our destination and
source are the same representative, we do not create the actual assign. Before
we did not log this so it looked like there was a logic error that was stopping
us from emitting a partition op when visiting said instructions. Now, we emit a
small logging message so it isn't possible to be confused.
3. Since I am adding another parameter to Partition::apply, I decided to
refactor Partition::apply to be in a separate PartitionOpEvaluator data
structure that contains the options that we used to pass into Partition::apply.
This prevents any mistakes around configuring Partition::apply since the fields
provide nice names/common sense default values.
We were performing a union on the intersection of the lhs/rhs but were dropping
the parts of lhs/rhs that were in the symmetric difference of the two sets.
Without this, we would not diagnose cases like this where we had elements on the
lhs/rhs that were not in the intersection.
```
var closure: () -> () = {}
await transferToMain(closure)
if await booleanFlag {
closure = {
print(self.klass)
}
} else {
closure = {}
}
// At this point we would lose closure since they were different elements
await transferToMain(closure) // We wouldn't error on this!
```
rdar://117437059