Separate swift-syntax libs for the compiler and for the library plugins.
Compiler communicates with library plugins using serialized messages
just like executable plugins.
* `lib/swift/host/compiler/lib_Compiler*.dylib`(`lib/CompilerSwiftSyntax`):
swift-syntax libraries for compiler. Library evolution is disabled.
* Compiler (`ASTGen` and `swiftIDEUtilsBridging`) only depends on
`lib/swift/host/compiler` libraries.
* `SwiftInProcPluginServer`: In-process plugin server shared library.
This has one `swift_inproc_plugins_handle_message` entry point that
receives a message and return the response.
* In the compiler
* Add `-in-process-plugin-server-path` front-end option, which specifies
the `SwiftInProcPluginServer` shared library path.
* Remove `LoadedLibraryPlugin`, because all library plugins are managed
by `SwiftInProcPluginServer`
* Introduce abstract `CompilerPlugin` class that has 2 subclasses:
* `LoadedExecutablePlugin` existing class that represents an
executable plugin
* `InProcessPlugins` wraps `dlopen`ed `SwiftInProcPluginServer`
* Unified the code path in `TypeCheckMacros.cpp` and `ASTGen`, the
difference between executable plugins and library plugins are now
abstracted by `CompilerPlugin`
Use FetchContent to include swift-syntax directly in swift. This can be
thought of as an `add_subdirectory` for a directory outside the root.
The default build directory will be `_deps/swiftsyntax-subbuild/`, though
the modules and shared libraries will be built in `lib/swift/host` by
passing down `SWIFT_HOST_LIBRARIES_DEST_DIR` to avoid copying them as we
were doing previously.
Instead of letting CMake set RPATH of the test executables, use
INSTALL_RPATH and BUILD_WITH_INSTALL_RPATH just like other executable
and shared libraries.
Previously when a swift module link with exported swift-syntax targets e.g.
'SwiftSyntax::SwiftParser', the libraries in earlyswiftsyntax were used
instead of the copied libraries in the swift build directory. That
wasn't ideal.
In Linux. Instead of setting temporary "fallback" RUNPATH, Set
LD_LIBRARY_PATH to builder's runtime when building standard library.
So we don't need to strip the temporary RUNPATH when installing.
For compiling codes required for macro support, we now need swiftc
compiler in the build machine.
Unlike Darwin OSes, where swiftCore runtime is guaranteed to be present
in /usr/lib, Linux doesn't have ABI stability and the stdlib of the
build machine is not at the specific location. So the built compiler
cannot relies on the shared object in the toolchain.
We need to pick up the `_swift_tsan_xxx` symbols from libswiftCore in
most cases, but sometimes we're statically linked and in that case we
want to use a local copy.
rdar://1106655213
For future usage from other host libraries written in Swift
For CMake:
* Explicitly specify LINKER_LANGAGE to CXX in existing components so
that 'swiftc' is not used when linking with 'swiftASTGen'
* Add 'EMIT_MODULE' argument to 'add_pure_swift_host_library' to emit
.swiftmodule usable from other Swift libraries.
The function that adds runtime link flags overrides RPATH settings via
`BUILD_WITH_INSTALL_RPATH`. Stop doing that for unit tests, because they
depend on host libraries built into `lib` not `lib/swift/${platformname}`.
These are better done via the SwiftConfigureSDK mechanism rather than
how I was doing them previously. Additionally, I've changed the way
that the swift-threading-package option works. In addition to
specifying just a single package name, you can specify it as a CMake
list (i.e. separate by semicolons) of colon-separated `sdk:package`
pairs, e.g. `osx:darwin;linux:pthreads`. You can also override it
for all SDKs and then specify for a given SDK; specifications for a
particular SDK take precedence over the global override. For instance
`pthreads;osx:darwin` says to use `pthreads` except on the OS X SDK
where we should use `darwin`.
Moved all the threading code to one place. Added explicit support for
Darwin, Linux, Pthreads, C11 threads and Win32 threads, including new
implementations of Once for Linux, Pthreads, C11 and Win32.
rdar://90776105
SWIFT_STDLIB_SINGLE_THREADED_RUNTIME is too much of a blunt instrument here.
It covers both the Concurrency runtime and the rest of the runtime, but we'd
like to be able to have e.g. a single-threaded Concurrency runtime while
the rest of the runtime is still thread safe (for instance).
So: rename it to SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY and make it just
control the Concurrency runtime, then add a SWIFT_STDLIB_THREADING_PACKAGE
setting at the CMake/build-script level, which defines
SWIFT_STDLIB_THREADING_xxx where xxx depends on the chosen threading package.
This is especially useful on systems where there may be a choice of threading
package that you could use.
rdar://90776105
Moved all the threading code to one place. Added explicit support for
Darwin, Linux, Pthreads, C11 threads and Win32 threads, including new
implementations of Once for Linux, Pthreads, C11 and Win32.
rdar://90776105
SWIFT_STDLIB_SINGLE_THREADED_RUNTIME is too much of a blunt instrument here.
It covers both the Concurrency runtime and the rest of the runtime, but we'd
like to be able to have e.g. a single-threaded Concurrency runtime while
the rest of the runtime is still thread safe (for instance).
So: rename it to SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY and make it just
control the Concurrency runtime, then add a SWIFT_STDLIB_THREADING_PACKAGE
setting at the CMake/build-script level, which defines
SWIFT_STDLIB_THREADING_xxx where xxx depends on the chosen threading package.
This is especially useful on systems where there may be a choice of threading
package that you could use.
rdar://90776105
The latest Long Term Support NDK finally removed binutils, including the bfd/gold
linkers and libgcc. This simplifies our Android support, including making lld the
default linker for Android. Disable three reflection tests that now fail, likely
related to issues with swift-reflection-dump and switching to lld.
The latest Long Term Support NDK finally removed binutils, including the bfd/gold
linkers and libgcc. This simplifies our Android support, including making lld the
default linker for Android. Disable three reflection tests that now fail, likely
related to issues with swift-reflection-dump and switching to lld.
Also, add the libatomic dependency for Android armv7, just as on linux.
Some headers switch their inline implementations based on
SWIFT_STDLIB_SINGLE_THREAD_RUNTIME definition.
This fixes linking failure while building runtime unittests
As a postprocessing step for unittest executables, `utils/swift-rpathize.py` unconditionally rewrites the install name of any library linked from /usr/lib/swift to be `@rpath`-relative, in an effort to load the just-built libraries instead of the OS-supplied ones.
This works great for dylibs like libswiftCore.dylib that are built as part of the toolchain, but `/usr/lib/swift` also includes a huge number of overlay dylibs that are no longer part of this repository. These dylibs must ~always be loaded from the OS location.
In order to prevent load-time issues, we need to add /usr/lib/swift to the rpath, so any libraries that we haven’t built will be picked up from there.
We could also do this by extending swift-rpathize.py with an allow (or deny) list, but keeping the list up to date would generate a bunch of maintenance work we could do without.
gtest, gtest_main LINK_LIBRARIES dependencies changed by that removed scripts to absolute library file path. as a result losing necessary include path dirs.
add target include directories on AddSwiftUnittests.cmake module.
currently generated Xcode project doesn't include googletest headers after https://reviews.llvm.org/D86616
Since the NDK removes the platforms/ and sysroot/ directories in the latest NDK
22, switch to the unified sysroot in toolchains/llvm/ and take advantage of a
bunch of simplification that's now possible.
This adjusts the target specific argument handling to use the same logic
as the toolchain, and in doing so, silences the spurious warnings when
building with a MSVC toolchain.
Also remove some ancient logic to detect and ignore requests to use LLD.
If people want to explicitly use LLD, they probably have a reason and we
shouldn't second guess them.
Check if building on Android through the ANDROID_DATA environment variable, then set
SWIFT_ANDROID_NATIVE_SYSROOT to the default layout for the Termux app, and key all the
include, lib, and other SDK paths off of that. The system libc and a few other libraries
are linked against from /system/lib[64]. Finally, check if lit is running natively on
Android and don't use adb if so.
Other changes:
1) Minimize unified versus build-script build differences.
2) Stop trying to make runtime variables have "protected" visibility.
This combination is meaningless and lld rightly complains.
Finally, this blog post is worth reading:
http://www.airs.com/blog/archives/307
This seems to more than fix a performance regression that we
detected on a metadata-allocation microbenchmark.
A few months ago, I improved the metadata cache representation
and changed the metadata allocation scheme to primarily use malloc.
Previously, we'd been using malloc in the concurrent tree data
structure but a per-cache slab allocator for the metadata itself.
At the time, I was concerned about the overhead of per-cache
allocators, since many metadata patterns see only a small number
of instantiations. That's still an important factor, so in the
new scheme we're using a global allocator; but instead of using
malloc for individual allocations, we're using a slab allocator,
which should have better peak, single-thread performance, at the
cost of not easily supporting deallocation. Deallocation is
only used for metadata when there's contention on the cache, and
specifically only when there's contention for the same key, so
leaking a little isn't the worst thing in the world.
The initial slab is a 64K globally-allocated buffer.
Successive slabs are 16K and allocated with malloc.
rdar://28189496
This seems to more than fix a performance regression that we
detected on a metadata-allocation microbenchmark.
A few months ago, I improved the metadata cache representation
and changed the metadata allocation scheme to primarily use malloc.
Previously, we'd been using malloc in the concurrent tree data
structure but a per-cache slab allocator for the metadata itself.
At the time, I was concerned about the overhead of per-cache
allocators, since many metadata patterns see only a small number
of instantiations. That's still an important factor, so in the
new scheme we're using a global allocator; but instead of using
malloc for individual allocations, we're using a slab allocator,
which should have better peak, single-thread performance, at the
cost of not easily supporting deallocation. Deallocation is
only used for metadata when there's contention on the cache, and
specifically only when there's contention for the same key, so
leaking a little isn't the worst thing in the world.
The initial slab is a 64K globally-allocated buffer.
Successive slabs are 16K and allocated with malloc.
rdar://28189496
Enable CMake policy CMP0057, which allows `if()` statements to use the `IN_LIST`
operator. In addition, simplify several `if()` statements that used the
`list(FIND ...)` operation instead.