* [CMake] Give a dedicated component to compiler swift-syntax libraries
'compiler-swift-syntax-lib' so projects statically link to compiler
libraries (libAST etc) can use the required shared libraries.
rdar://135923606
* Update cmake caches
* Add back implicit `swift-syntax-lib` to `compiler` component for now
Some clients doesn't specify `swift-syntax-lib`.
This library uses GenericMetadataBuilder with a ReaderWriter that can read data and resolve pointers from MachO files, and emit a JSON representation of a dylib containing the built metadata.
We use LLVM's binary file readers to parse the MachO files and resolve fixups so we can follow pointers. This code is somewhat MachO specific, but could be generalized to other formats that LLVM supports.
rdar://116592577
Conflicts:
- `CMakeLists.txt` caused by the extra `-D` added in rebranch to
reduce the number of deprecation warnings.
- `lib/Frontend/PrintingDiagnosticConsumer.cpp` caused by the removal
of one of the `#if SWIFT_SWIFT_PARSER` on rebranch (probably should
have been done on main).
LLVM install_symlink takes a new argument on whether to create a symlink
or copy binaries when run. -- https://reviews.llvm.org/D145443
The variable that controls this in LLVM is `LLVM_USE_SYMLINKS`, which
defaults to `ON` on Unix-y hosts, but otherwise is false so that Windows
works. This is a configurable option, so Windows configs that can
support symlinks can take advantage of symlinks and save some space.
`LLVM_USE_SYMLINKS` is not exported from LLVM though, so we can't see
it to use. Instead, we have `SWIFT_USE_SYMLINKS`.
As of CMake 3.25, there are now global variables `LINUX=1`, `ANDROID=1`,
etc. These conflict with expressions that used these names as unquoted
strings in positions where CMake accepts 'variable|string', for example:
- `if(sdk STREQUAL LINUX)` would fail, because `LINUX` is now defined and
expands to 1, where it would previously coerce to a string.
- `if(${sdk} STREQUAL "LINUX")` would fail if `sdk=LINUX`, because the
left-hand side expands twice.
In this patch, I looked for a number of patterns to fix up, sometimes a
little defensively:
- Quoted right-hand side of `STREQUAL` where I was confident it was
intended to be a string literal.
- Removed manual variable expansion on left-hand side of `STREQUAL`,
`MATCHES` and `IN_LIST` where I was confident it was unintended.
Fixes#65028.
This is the start of the removal of the C++ implementation of libSyntax
in favor of the new Swift Parser and Swift Syntax libraries. Now that
the Swift Parser has switched the SwiftSyntaxParser library over to
being a thin wrapper around the Swift Parser, there is no longer any
reason we need to retain any libSyntax infrastructure in the swift
compiler.
As a first step, delete the infrastructure that builds
lib_InternalSwiftSyntaxParser and convert any scripts that mention
it to instead mention the static mirror libraries. The --swiftsyntax
build-script flag has been retained and will now just execute the
SwiftSyntax and Swift Parser builds with the just-built tools.
This separates it from `libSwiftScan` and allows us to build this library without building much of the rest of the compiler.
Also refactor `utils/build-parser-lib` into `utils/build-tooling-libs` which builds both SwiftSyntaxParser and SwiftStaticMirror.
Introduce an additional build product to build-script to build
back-deployable concurrency libraries. These libraries would need to
be embedded in apps deployed prior to macOS 12/iOS 15 to support
concurrency.
The built-script option `--back-deploy-concurrency` can be provided to
build these back-deployment libraries. They are built in addition to
the normal concurrency libraries, as a separate product that installs
into `lib/swift-5.5/<platform>` within the toolchain. The macro
`SWIFT_CONCURRENCY_BACK_DEPLOYMENT` is set when building the
concurrency library, so that we can adapt the implementation to older
OS's.
This commit introduces a CMake target for each component, adds install targets
for them, and switches build-script-impl to use the target `install-components`
for installation. Each of the targets for each component depends on each
of the individual targets and outputs that are associated with the
corresponding swift-component.
This is equivalent to what already exists, because right now install rules are
only generated for components that we want to install. Therefore, this commit
should be an NFC.
This is a resubmission (with modifications) of an earlier change. I originally
committed this but there were problems with some installation rules.
This commit introduces a CMake target for each component, adds install targets
for them, and switches build-script-impl to use the target `install-components`
for installation. Each of the targets for each component depends on each
of the individual targets and outputs that are associated with the
corresponding swift-component.
This is equivalent to what already exists, because right now install rules are
only generated for components that we want to install. Therefore, this commit
should be an NFC.
CMake supports the notion of installation components. Right now we have some
custom code for supporting swift components. I think that for installation
purposes, it would be nice to use the CMake component system.
This should be a non-functional change. We should still only be generating
install rules for targets and files in components we want to install, and we
still use the install ninja target to install everything.
Previously, build-script-impl would set this to "" by default, resulting
in nothing being installed with --install-swift unless you explicitly
set --swift-install-components as well. Now we defer to cmake by
default.
On the cmake side, change the default value to exclude
* dev - uses a lot of disk space and usually not something you want to
install into a toolchain
* clang-resource-dir-symlink & clang-builtin-headers-in-clang-resource-dir -
these are mutually exclusive with clang-builtin-headers
* sourcekit inproc/xpc - these are currently mutually exclusive, so pick
the best one for the current platform.
* Create Swift libSyntax API
This patch is an initial implementation of the Swift libSyntax API. It
aims to provide all features of the C++ API but exposed to Swift.
It currently resides in SwiftExperimental and will likely exist in a
molten state for a while.
* Only build SwiftSyntax on macOS
Similarly to Clang, the flag enables coverage instrumentation, and links
`libLLVMFuzzer.a` to the produced binary.
Additionally, this change affects the driver logic, and enables the
concurrent usage of multiple sanitizers.
In which case the 'SWIFT_INSTALL_[component]' will be FALSE.
This is useful to get the behavior where all components are set to install by default and exclude just a specific one.
* Ensure LLVM_CMAKE_DIR is always set so it can be used
* Use LLVM_CMAKE_DIR instead of searching the module paths
* Label parameters of cmake_parse_arguments in comments
Enable CMake policy CMP0057, which allows `if()` statements to use the `IN_LIST`
operator. In addition, simplify several `if()` statements that used the
`list(FIND ...)` operation instead.
The problem here is a bit complicated. The symlink_clang_headers target creates two symlinks to clang's headers, one under the build directory at lib/swift/clang, and the other under a temporary path.
The one under the temporary path is a bad symlink, and it is only created during the build so that it can be installed. It isn't actually used by the build. Ninja treats the bad symlink as a non-existing file, and since the build rule that creates it has the restat property on it this results in the commands to symlink the clang headers directory running over and over and over again during the build.
This patch prevents that by not generating the bad symlink during the build. Instead we generate it at install time using the LLVMInstallSymlink script that is vended as part of LLVM's distribution.
We also validate that each one of the given components sets are actually sets
and in addition are disjoint from each other.
In order to make sure that this is a NFC change, add all components to all 3
variables. This ensures that we preserve normal behavior of generating cmake
targets for all components and building all components by default even when
nothing is passed in to be installed.
In the next little bit I am going to be creating a more complex components
system. In order to help with this, I am renaming SwiftInstallComponents =>
SwiftComponents.cmake to reflect the broader purpose.