Once we compute a generic signature from a generic signature builder,
all queries involving that generic signature will go through a separate
(canonicalized) builder, and the original builder can no longer be used.
The canonicalization process then creates a new, effectively identical
generic signature builder. How silly.
Once we’ve computed the signature of a generic signature builder, “register”
it with the ASTContext, allowing us to move the existing generic signature
builder into place as the canonical generic signature builder. The builder
requires minimal patching but is otherwise fully usable.
Thanks to Slava Pestov for the idea!
Once we compute a generic signature from a generic signature builder,
all queries involving that generic signature will go through a separate
(canonicalized) builder, and the original builder can no longer be used.
The canonicalization process then creates a new, effectively identical
generic signature builder. How silly.
Once we’ve computed the signature of a generic signature builder, “register”
it with the ASTContext, allowing us to move the existing generic signature
builder into place as the canonical generic signature builder. The builder
requires minimal patching but is otherwise fully usable.
Thanks to Slava Pestov for the idea!
Given an existential type E, this creates a new canonical
generic signature <T : E>.
If E is a protocol composition containing members of protocol,
class or AnyObject type, the resulting generic signature will
split up the T : E requirement into a canonical and minimal
set of conformance, superclass and layout requirements.
If/when we implement generalized existentials, existential
types will be defined in terms of an arbitrary set of
generic requirements applied to a single generic parameter;
at that point, this method will be replaced with a generic
signature stored inside the type itself.
For now, this will be used to simplify some logic in the
SILOptimizer.
This implementation required a compromise between parser
performance and AST structuring. On the one hand, Parse
must be fast in order to keep things in the IDE zippy, on
the other we must hit the disk to properly resolve 'canImport'
conditions and inject members of the active clause into the AST.
Additionally, a Parse-only pass may not provide platform-specific
information to the compiler invocation and so may mistakenly
activate or de-activate branches in the if-configuration decl.
The compromise is to perform condition evaluation only when
continuing on to semantic analysis. This keeps the parser quick
and avoids the unpacking that parse does for active conditions
while still retaining the ability to see through to an active
condition when we know we're moving on to semantic analysis anyways.
Recently support was added for '-swift-version 5' to the frontend.
Right now we only have an isSwiftVersion3() check which returns 'true'
if the version is 3, and returns 'false' if it is 4 or 5. This was used
during Swift 4.0 development to guard various legacy behaviors that we
wish to deprecate.
Going forward, when do not want to add isSwiftVersion4() and
isSwiftVersion5() checks, because they're too fragile; if a new
behavior is introduced in Swift 5 that we wish to disable in Swift 3
and Swift 4 mode, checking for isSwiftVersion5() is insufficient,
because eventually Swift 6 will roll around, and presumably one would
expect the new behavior to take effect in Swift 6 mode as well.
I think a better solution is a 'isSwiftVersionAtLeast()' check, which
checks if the major version number is greater than or equal to the
given value.
We could refactor the existing 'isSwiftVersion3()' checks to instead
do '!isSwiftVersionAtLeast(4)', but I'm going to hold off on doing that
for now.
Rather than having `ASTContext:: getOrCreateCanonicalGenericEnvironment()`
ask its `GenericSignatureBuilder` parameter recompute the generic signature
at nontrivial cost, just pass the known signature through.
When casting from an object type to a bridged Swift value type, classifyDynamicCast would use the cast classification for the target type's bridged object type, which would be trivially WillSucceed for thinks like NSNumber-to-Int or NSError-to-SomeError, even though the bridging itself could fail. Fixing this fixes SR-2920|rdar://problem/31404281.
ASTContext::getSpecializedConformance() already copies the
substitutions, so remove some AllocateCopy() calls.
Also, add a new overload taking a SubstitutionMap instead.
This allows removing some gatherAllSubstitutions() calls,
which have an allocation inside them.
Finally, remove the now-unused ModuleDecl parameter from
ProtocolConformance::subst() and make it public.
This has the effect of propagating the search path to the clang importer as '-iframework'.
It doesn't affect whether a swift module is treated as system or not, this can be done as follow-up enhancement.
SubstitutionList is going to be a more compact representation of
a SubstitutionMap, suitable for inline allocation inside another
object.
For now, it's just a typedef for ArrayRef<Substitution>.
* Pack the bits for IfConfigDecls into Decl
* Don't open symbols into a module when evaluating canImport statements
The module loaders now have API to check whether a given module can be
imported without importing the referenced module. This provides a
significant speed boost to condition resolution and no longer
introduces symbols from the referenced module into the current context
without the user explicitly requesting it.
The definition of ‘canImport’ does not necessarily mean that a full
import without error is possible, merely that the path to the import is
visible to the compiler and the module is loadable in some form or
another.
Note that this means this check is insufficient to guarantee that you
are on one platform or another. For those kinds of checks, use
‘os(OSNAME)’.
- The DeclContext versions of these methods have equivalents
on the DeclContext class; use them instead.
- The GenericEnvironment versions of these methods are now
static methods on the GenericEnvironment class. Note that
these are not made redundant by the instance methods on
GenericEnvironment, since the static methods can also be
called with a null GenericEnvironment, in which case they
just assert that the type is fully concrete.
- Remove some unnecessary #includes of ArchetypeBuilder.h
and GenericEnvironment.h. Now changes to these files
result in a lot less recompilation.
When deserializing the generic environment for a generic type, only
immediately deserialize the generic signature. The generic environment
will be deserialized later, when it's needed.
When we deserialize a function that has a generic environment, set the
generic signature and a key to allow lazy creation of the generic
environment. Because most clients won't need the generic environment,
this lets us avoid creating generic environments.
Save two pointers of storage in IterableDeclContext (a base class of
nominal type and extension declarations) by storing the lazy member
loader + context data in an ASTContext side table. It also makes it
easier to add more lazy context information later on.
When a pattern within a type context is serialized, serialize its
interface type (not its contextual type). When deserializing, record
the interface type and keep a side table of the associated
DeclContext, so that we can lazily map to the contextual type on first
access. This is designed to break recursion when we change the way
archetypes and generic environments are serialized.
While not strictly needed for type checking, it's extremely useful for
debugging and verification to know what context a particular generic
environment is associated with. This information was in a kludgy side
table, but it's worth a pointer in GenericEnvironment to always have
it available.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
This eliminates the really gross registration of archetype builders
within the ASTContext, and is another little step toward lazily
constructing archetypes.
Rather than directly using the ArchetypeBuilder associated with a
canonical generic signature, use a canonical GenericEnvironment
associated with that canonical generic signature. This has a few
benefits:
* It's cleaner to not have IRGen working with archetype builders;
GenericEnvironment is the right abstraction for mapping between
dependent types and archetypes for a specific context.
* It helps us separate the archetype builder from a *specific*
set of archetypes. This is an ongoing refactor that is intended to
allow us to re-use archetype builders across different generic
environments.
As part of this, ArchetypeBuilder::substDependentType() has gone away
in favor of GenericEnvironment::mapTypeIntoContext().
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.
The ASTContext had a wacky "get member type" callback that actually
called back into the constraint system (!) to build member types. This
callback was obsoleted by the change that started representing nested
types as DependentMemberTypes.
Various parts of the type checker (related to enum == synthesis) rely
on == for Ints being a module-scope function, which is silly. Remove
the restriction. Fixes rdar://problem/29029561.
This gives us a concept we can eventually use to cache the lowered physical layout of fragile structs and classes, and more immediately, concretize the layout of closure boxes in a way that lets us represent the capture of generic environments and multiple captured values without compromising the "nominal" nature of box layouts. To start exercising the basic implementation, change the representation of SILBoxType to be in terms of a SILLayout, though avoid any immediate functionality change by preserving the single-boxed-type interface for now.
The recent @escaping on variadic argument closures back-compat fix is
the first Swift 3.0 compatibility behavior that we don't want to carry
forwards indefinitely into the future. To address this, we
version-gate the diagnostic suppression.
Makes it an official compatibility check. Creates new test directory
for compatibility testing. Allow -swift-version 4 so that we can test
it both ways.
Extend NSNumber bridging to cover not only `Int`, `UInt`, `Double`, and `Bool`, but all of the standard types as well. Extend the `TypePreservingNSNumber` subclass to accommodate all of these types, so that we preserve type identity for `AnyHashable` and dynamic casting of Swift-bridged NSNumbers. If a pure Cocoa NSNumber is cast, just trust that the user knows what they're doing.
This XFAILs a couple of serialization tests that attempt to build the Foundation overlay, but which don't properly handle `gyb` files.