Adds an access control field for each imported module identified. When multiple imports of the same module are found, this keeps track of the most "open" access specifier.
With '-sdk-module-cache-path', Swift textual interfaces found in the SDK will be built into a separate SDK-specific module cache.
Clang modules are not yet affected by this change, pending addition of the required API.
Add ability to automatically chaining the bridging headers discovered from all
dependencies module when doing swift caching build. This will eliminate all
implicit bridging header imports from the build and make the bridging header
importing behavior much more reliable, while keep the compatibility at maximum.
For example, if the current module A depends on module B and C, and both B and
C are binary modules that uses bridging header, when building module A,
dependency scanner will construct a new header that chains three bridging
headers together with the option to build a PCH from it. This will make all
importing errors more obvious while improving the performance.
This failure will most-likely result in the dependency query failure which will fail the scan. It will be helpful if the scanner emitted diagnostic for each such module it rejected to explain the reason why.
Resolves rdar://142906530
In https://github.com/swiftlang/swift/pull/77156, normalization was introduced
for -target-variant triples. That PR also caused -target-variant arguments to
be inherited from the main compilation options whenever building dependency
modules from their interfaces, which is incorrect. The -target-variant option
must only be specified when compiling a "zippered" module, but the dependencies
of zippered modules are not necessarily zippered themselves and
indiscriminantly propagating the option can cause miscompilation.
The new, more targeted approach to normalizing arm64e triples simply uses the
arch and subarch of the -target argument of the main compile to decide whether
the subarch of both the -target and -target-variant arguments of a dependency
need adjustment.
Resolves rdar://135322077 and rdar://141640919.
It might be unexpected to future users that `-swift-compiler-version`
would produce a version aligned to .swiftinterface instead of one used
to build the .swiftmodule file. To avoid this possible confusion, let's
scope down the version to `-interface-compiler-version` flag and
`SWIFT_INTERFACE_COMPILER_VERSION` option in the module.
Based on preliminary work from @rmaz.
The compilation arguments for a swiftinterface file are preprocessed to
modify the `-target` argument to match the preferred target (which comes
from the command line) in cases in which the sub-architecture differs,
but it is compatible (for example using `arm64e` when `arm64` is being
compiled), but this was not done for the target variant, which ended up
with mismatches on the sub-architecture used by the target and target
variant, which fails an assert in assert toolchains.
Use IncludeTreeFileList instead of full feature CASFS for swift
dependency filesystem. This allows smaller CAS based VFS that is smaller
and faster. This is enabled by the CAS enabled compilation does not
need to iterate file system.
rdar://136787368
Add function to handle all macro dependencies kinds in the scanner,
including taking care of the macro definitions in the module interface
for its client to use. The change involves:
* Encode the macro definition inside the binary module
* Resolve macro modules in the dependencies scanners, including those
declared inside the dependency modules.
* Propagate the macro defined from the direct dependencies to track
all the potentially available modules inside a module compilation.
When '.package.swiftinterface' loading ('-experimental-package-interface-load') is disabled and when '-scanner-module-validation' is disabled, the scanner defaults to locating the non-package textual interface and may specify its adjacent binary module as a valid candidate binary module to use. If said candidate is up-to-date and ends up getting used, and belongs to the same package as the loading Swift source, then the source compilation may attempt to load its package-only dependencies. Since the scanner only parsed the non-package textual interface, those dependencies are not located and specified as inputs to compilation. This change causes the scanner, in such cases, to also lookup package-only dependencies in adjacent binary Swift modules of textual Swift module dependencies, if such dependency belongs to the same package as the source target being scanned.
Resolves rdar://135215789
Fix the problem that when the only module can be found is an
invalid/out-of-date swift binary module, canImport and import statement
can have different view for if the module can be imported or not.
Now canImport will evaluate to false if the only module can be found for
name is an invalid swiftmodule, with a warning with the path to the
module so users will not be surprised by such behavior.
rdar://128876895
We cannot always rely on being able to do so only as an overlay query upon loading 'requires cplusplus' modulemap modules. The 'requires' statement only applies to submodules, and we may not be able to query language feature modulemap attributes in dependency scanning context.
If a testable module is loaded from a non-testable import, ignore its
optional dependencies because the consumer should not use them. This
matches the behavior of the implicit build or the behavior how
forwarding module is created.
Follow-up adjustment for binary module selection in dependency scanning
time. If a testable binary module doesn't have an interface file, it
should be used even it might pull in more dependencies.
Teach scanner to pick and choose binary modules correctly based on if it
is testable import or not. Some situations that scanner need to be
careful when testable is involved:
* When it is a regular import, it should not import binary modules that
are built with -enable-testing, it should prefer interfaces if that is
available.
* When testable import, it should only load binary module and it should
make sure the internal imports from binary modules are actually
required for testable import to work.
If a testable import only find a regular binary module, dependency
scanner currently will just preceed with such module and leave the
diagnostics to swift-frontend, because the alternative (failed to find
module) can be confusing to users.
rdar://125914165
Improve swift dependency scanner by validating and selecting dependency
module into scanner. This provides benefits that:
* Build system does not need to schedule interface compilation task if
the candidate module is picked, it can just use the candidate module
directly.
* There is no need for forwarding module in the explicit module build.
Since the build system is coordinating the build, there is no need for
the forwarding module in the module cache to avoid duplicated work,
* This also correctly supports all the module loading modes in the
dependency scanner.
This is achieved by only adding validate and up-to-date binary module as
the candidate module for swift interface module dependency. This allows
caching build to construct the correct dependency in the CAS. If there
is a candidate module for the interface module, dependency scanner will
return a binary module dependency in the dependency graph.
The legacy behavior is mostly preserved with a hidden frontend flag
`-no-scanner-module-validation`, while the scanner output is mostly
interchangeable with new scanner behavior with `prefer-interface` module
loading mode except the candidate module will not be returned.
rdar://123711823
In certain cases (e.g. using arm64e interface to build arm64 target),
the target needs to be updated when building swiftinterface. Push the
target overwrite as early as possible to swiftinterface parsing by
providing a preferred target to relevant functions. In such cases, the
wrong target is never observed by other functions to avoid errors like
the sub-invocation was partially setup for the wrong target.
Otherwise they may have module dependencies of their own which will not be detected by the scanner and included in the list of explicit inputs for compilation.
When scanning finds a dependency in the same package, do not load
public/private swiftinterface since they do not have the package level
decl to compile the current module. Always prefer package module (if
enabled), or use binary module, unless it is building a public/private
swiftinterface file in which case the interface file is preferred.
This also does some clean up to sync up the code path between implicit
and explicit module finding path.
rdar://122356964
A swiftmodule can only be correctly ingested by a compiler
that has a matching state of using or not-using
NoncopyableGenerics.
The reason for this is fundamental: the absence of a Copyable
conformance in the swiftmodule indicates that a type is
noncopyable. Thus, if a compiler with NoncopyableGenerics
reads a swiftmodule that was not compiled with that feature,
it will think every type in that module is noncopyable.
Similarly, if a compiler with NoncopyableGenerics produces a
swiftmodule, there will be Copyable requirements on each
generic parameter that the compiler without the feature will
become confused about.
The solution here is to trigger a module mismatch, so that
the compiler re-generates the swiftmodule file using the
swiftinterface, which has been kept compatible with the compiler
regardless of whether the feature is enabled.
Add a new flag to enable package interface loading.
Use the last value of package-name in case of dupes.
Rename PrintInterfaceContentMode as InterfaceMode.
Update diagnostics.
Test package interface loading with various scenarios.
Test duplicate package-name.
It has an extension .package.swiftinterface and contains package decls
as well as SPIs and public/inlinable decls. When a module is loaded
from interface, it now looks up the package-name in the interface
and checks if the importer is in the same package. If so, it uses
that package interface found to load the module. If not, uses the existing
logic to load modules.
Resolves rdar://104617854
Allow DependencyScanner to canonicalize path using a prefix map. When
option `-scanner-prefix-map` option is used, dependency scanner will
remap all the input paths in following:
* all the paths in the CAS file system or clang include tree
* all the paths related to input on the command-line returned by scanner
This allows all the input paths to be canonicalized so cache key can be
computed reguardless of the exact on disk path.
The sourceFile field is not remapped so build system can track the exact
file as on the local file system.
From being a scattered collection of 'static' methods in ScanDependencies.cpp
and member methods of ASTContext. This makes 'ScanDependencies.cpp' much easier
to read, and abstracts the actual scanning logic away to a place with common
state which will make it easier to reason about in the future.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
If we have both loaded a swiftdoc, and the decl we
have should have had its doc comment serialized into
it, we can check it without needing to fall back
to the swiftsourceinfo.
This requires a couple of refactorings:
- Factoring out the `shouldIncludeDecl` logic
into `getDocCommentSerializationTargetFor` for
determining whether a doc comment should end up
in the swiftdoc or not.
- Factoring out `CommentProviderFinder` for searching
for the doc providing comment decl for brief
comments, in order to allow us to avoid querying
the raw comment when searching for it. This has the
added bonus of meaning we no longer need to fall
back to parsing the raw comment for the brief
comment if the comment is provided by another decl
in the swiftdoc.
This diff is best viewed without whitespace.
For a `@Testable` import in program source, if a Swift interface dependency is discovered, and has an adjacent binary `.swiftmodule`, open up the module, and pull in its optional dependencies. If an optional dependency cannot be resolved on the filesystem, fail silently without raising a diagnostic.