For context, String, Nil, and Bool already behave this way.
Note: Before it used to construct (call, ... (integer_literal)), and the
call would be made explicit / implicit based on if you did eg: Int(3) or
just 3. This however did not translate to the new world so this PR adds
a IsExplicitConversion bit to NumberLiteralExpr. Some side results of
all this are that some warnings changed a little and some instructions are
emitted in a different order.
Currently invalid initializer references are detected and
diagnosed in solution application phase, but that's too
late because solver wouldn't have required information while
attempting to determine the best solution, which might result
in viable solutions being ignored in favour of incorrect ones e.g.
```swift
protocol P {
init(value: Int)
}
class C {
init(value: Int, _: String = "") {}
}
func make<T: P & C>(type: T.Type) -> T {
return T.init(value: 0)
}
```
In this example `init` on `C` would be preferred since it
comes from the concrete type, but reference itself is invalid
because it's an attempt to construct class object using
metatype value via non-required initalizer.
Situations like these should be recognized early and invalid
use like in case of `C.init` should be ranked lower or diagnosed
if that is the only possible solution.
Resolves: rdar://problem/47787705
Instead of constructing calls to ExpressibleByBooleanLiteral.init(booleanLiteral: ...) in CSApply.cpp, just
annotate BooleanLiteralExpr with the selected constructor and do the actual construction during SILGen.
For context, StringLiteralExpr and NilLiteralExpr already behave this way.
Instead of constructing calls to
ExpressibleByNilLiteral.init(nilLiteral: ()) in CSApply.cpp, just
annotate NilLiteralExpr with the selected construtor and do the actual
construction during SILGen.
For context, StringLiteralExpr already behaves this way.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
The `Stmt` and `Expr` classes had both `dump` and `print` methods that behaved similarly, making it unclear what each method was for. Following a conversation in https://forums.swift.org/t/unifying-printing-logic-in-astdumper/15995/6 the `dump` methods will be used to print the S-Expression-like ASTs, and the `print` methods will be used to print the more textual ASTPrinter-based representations. The `Stmt` and `Expr` classes seem to be where this distinction was more ambiguous. These changes should fix that ambiguity.
A few other classes also have `print` methods used to print straightforward representations that are neither the S-Expressions nor ASTPrinters. These were left as they are, as they don't cause the same ambiguity.
It should be noted that the ASTPrinter implementations themselves haven't yet been finished and aren't a part of these changes.
There’s a few places where size_t is used for a field/parameter when constructing an array for types. Unfortunately, the Bitfields that were backing the inputs to these at some point after 4.1 grew past 32 bits and are now backed by a uint64_t. Even though the slice of the bitfield is small enough for 32-bit, clang sees these slices as 64-bit and complains if there isn’t a cast involved.
`\.self` is the final chosen syntax. Implement support for this syntax, and remove the stopgap builtin and `WritableKeyPath._identity` property that were in place before.
This silences the instances of the warning from Visual Studio about not all
codepaths returning a value. This makes the output more readable and less
likely to lose useful warnings. NFC.
We previously allowed these closures to default to (), but be inferred
as other types as well, which means that we will find some expressions
to be ambiguous because we end up finding multiple viable solutions
where there is really only one reasonable solution.
Fixes: rdar://problem/42337247
I needed this for materializeForSet remission, but it makes inherited
variadic initializers work, too.
I tried to make this a reasonable starting point for a real language
feature. Here's what's still missing:
- syntax
- semantic restrictions to ensure that the expression isn't written in
invalid places or arbitrarily converted
- SILGen support for expansions that aren't the only variadic argument
rdar://16331406
Now, an AbstractFunctionDecl always stores a single parameter list.
Furthermore, ConstructorDecl and DestructorDecl always store a
ParamDecl for 'self'.
FuncDecl only has a 'self' if it is a member of a nominal type or
extension, so we tail-allocate the storage for it.
Most ApplyExpr subclasses will now require a ParenExpr, TupleExpr, or TupleShuffleExpr around their argument lists. The exceptions are BinaryExpr, which requires a TupleExpr, and SelfApplyExpr and its subclasses, which allow anything (and only ever have one argument).
This change doesn’t fix any of the places where we actually generate these.
The storage kind has been replaced with three separate "impl kinds",
one for each of the basic access kinds (read, write, and read/write).
This makes it far easier to mix-and-match implementations of different
accessors, as well as subtleties like implementing both a setter
and an independent read/write operation.
AccessStrategy has become a bit more explicit about how exactly the
access should be implemented. For example, the accessor-based kinds
now carry the exact accessor intended to be used. Also, I've shifted
responsibilities slightly between AccessStrategy and AccessSemantics
so that AccessSemantics::Ordinary can be used except in the sorts of
semantic-bypasses that accessor synthesis wants. This requires
knowing the correct DC of the access when computing the access strategy;
the upshot is that SILGenFunction now needs a DC.
Accessor synthesis has been reworked so that only the declarations are
built immediately; body synthesis can be safely delayed out of the main
decl-checking path. This caused a large number of ramifications,
especially for lazy properties, and greatly inflated the size of this
patch. That is... really regrettable. The impetus for changing this
was necessity: I needed to rework accessor synthesis to end its reliance
on distinctions like Stored vs. StoredWithTrivialAccessors, and those
fixes were exposing serious re-entrancy problems, and fixing that... well.
Breaking the fixes apart at this point would be a serious endeavor.
Several different places in the codebase synthesize IntegerLiteralExprs from computed unsigned variables; each one requires several lines of code and does things slightly differently. Write one central helper method to handle this.
Instead, generate the type variable in ConstraintGenerator.
However, we only want to generate it if we're type checking
from inside TypeChecker::typeCheckCompletionSequence(), so
add an isActivated() flag to CodeCompletionExpr. If it is
not set, constraint generation will simply fail on an
expression containing a CodeCompletionExpr.