For alias analysis query to be generally correct, we need to
effectively merge the escape state and use points for everything in a
defer web.
It was unclear from the current design whether the "escaping" property
applied to the pointer value or its content. The implementation is
inconsistent in how it was treated. It appears that some bugs have
been worked around by propagating forward through defer edges, some
have been worked around by querying the content instead of the
pointer, and others have been worked around be creating fake use
points at block arguments.
If we always simply query the content for escape state and use points,
then we never need to propagate along defer edges. The current code
that propagates escape state along defer edges in one direction is
simply incorrect from the perspective of alias analysis.
One very attractive solution is to merge nodes eagerly without
creating any defer edges, but that would be a much more radical change
even than what I've done here. It would also pose some new issues: how
to resolve the current "node types" when merging and how to deal with
missing content nodes.
This solution of applying escape state to content nodes solves all
these problems without too radical of a change at the expense of
eagerly creating content nodes. (The potential graph memory usage is
not really an issue because it's possible to drastically shrink the
size of the graph anyway in a future commit--I've been able to fit a
node within one cache line). This solution nicely preserves graph
structure which makes it easy to debug and relate to the IR.
Eagerly creating content nodes also solves the missing content node
problem. For example, when querying canEscapeTo, we need to know
whether to look at the escape state for just the pointer value itself,
or also for its content. It may be possible the its content node is
actually part of the same object at the IR level. If the content node
is missing, then we don't know if the object's interior address is not
recognizable/representable or whether we simply never saw an access to
the interior address. We can't simply look at whether the current IR
value happens to be a reference, because that doesn't tell us whether
the graph node may have been merged with a non-reference node or even
with it's own content node. To be correct in general, this query would
need to be extremely conservative. However, if content nodes are
always created for references, then we only need to query the escape
state of a pointer's content node. The content node's flag tells us if
it's an interior node, in which case it will always point to another
content node which also needs to be queried.
For alias analysis query to be generally correct, we need to
effectively merge the escape state and use points for everything in a
defer web.
It was unclear from the current design whether the "escaping" property
applied to the pointer value or its content. The implementation is
inconsistent in how it was treated. It appears that some bugs have
been worked around by propagating forward through defer edges, some
have been worked around by querying the content instead of the
pointer, and others have been worked around be creating fake use
points at block arguments.
If we always simply query the content for escape state and use points,
then we never need to propagate along defer edges. The current code
that propagates escape state along defer edges in one direction is
simply incorrect from the perspective of alias analysis.
One very attractive solution is to merge nodes eagerly without
creating any defer edges, but that would be a much more radical change
even than what I've done here. It would also pose some new issues: how
to resolve the current "node types" when merging and how to deal with
missing content nodes.
This solution of applying escape state to content nodes solves all
these problems without too radical of a change at the expense of
eagerly creating content nodes. (The potential graph memory usage is
not really an issue because it's possible to drastically shrink the
size of the graph anyway in a future commit--I've been able to fit a
node within one cache line). This solution nicely preserves graph
structure which makes it easy to debug and relate to the IR.
Eagerly creating content nodes also solves the missing content node
problem. For example, when querying canEscapeTo, we need to know
whether to look at the escape state for just the pointer value itself,
or also for its content. It may be possible the its content node is
actually part of the same object at the IR level. If the content node
is missing, then we don't know if the object's interior address is not
recognizable/representable or whether we simply never saw an access to
the interior address. We can't simply look at whether the current IR
value happens to be a reference, because that doesn't tell us whether
the graph node may have been merged with a non-reference node or even
with it's own content node. To be correct in general, this query would
need to be extremely conservative. However, if content nodes are
always created for references, then we only need to query the escape
state of a pointer's content node. The content node's flag tells us if
it's an interior node, in which case it will always point to another
content node which also needs to be queried.
This is the first in a series of patches that reworks
EscapeAnalysis. For this patch, I extracted every change that does not
introduce new features, rewrite logic, or appear to change
functionality.
These cleanups were done in preparation for:
- adding a graph representation for reference counted objects
- rewriting parts to the query logic
- ...which then allows the analysis to safely assume that all
exclusive arguments are unique
- ...which then allows more aggressive optimization of local variables
that don't escape
There are two possible functional changes:
1. getUnderlyingAddressRoot in InstructionUtils now sees through OSSA
instructions: begin_borrow and copy_value
2. The getPointerBase helper in EscapeAnalysis now sees through all of
these reference and pointer casts:
+ case ValueKind::UncheckedRefCastInst:
+ case ValueKind::ConvertFunctionInst:
+ case ValueKind::UpcastInst:
+ case ValueKind::InitExistentialRefInst:
+ case ValueKind::OpenExistentialRefInst:
+ case ValueKind::RawPointerToRefInst:
+ case ValueKind::RefToRawPointerInst:
+ case ValueKind::RefToBridgeObjectInst:
+ case ValueKind::BridgeObjectToRefInst:
+ case ValueKind::UncheckedAddrCastInst:
+ case ValueKind::UnconditionalCheckedCastInst:
+ case ValueKind::RefTo##Name##Inst:
+ case ValueKind::Name##ToRefInst:
This coalesces a whole bunch of nodes together that were just there
because of casts. The existing code was already doing this for one
level of casts, but there was a bug that prevented it from happening
transitively. So, in theory, anything that breaks with this fix could
also break without this fix, but may not have been exposed. The fact
that this analysis coalesces address-to-reference casts at all is what
caused me to spent vast amounts of time debugging any time I tried to
force some structure on the graph via assertions. If it is done at
all, it should be done everywhere consistently to expose issues as
early as possible.
Here is a description of the changes in diff order. If something in
the diff is not listed here, then the code probably just moved around
in the file:
Rename isNotAliasedIndirectParameter to
isExclusiveIndirectParameter. The argument may be aliased in the
caller's scope and it's contents may have already escaped.
Add comments to SILType APIs (isTrivial, isReferenceCounted) that give
answers about the AST type which don't really make sense for address
SILTypes.
Add comments about CGNode's 'Value' field. I spent lots of time
attempting to tighten this down with asserts, but it's only possible
for non-content nodes. For content nodes, the node's value is highly
unpredictable and basically nonsense but needed for debugging.
Add comments about not assuming that the content nodes pointsTo edge
represents physical indirection. This matters when reasoning about
aliasing and it's a tempting assumption to make.
Add a CGNode::mergeProperties placeholder for adding node properties.
Factor out a CGNode::canAddDeferred helper for use later.
Rename `setPointsTo` to `setPointsToEdge` because it actually creates
an edge rather than just setting `pointsTo`.
Add CGNode::getValue() and related helpers to help maintain invariants.
Factor out a `markEscaping` helper.
Clean up the `escapesInsideFunction` helper.
Add node visitor helpers: visitSuccessors, visitDefers. This made is
much easier to prototype utilities.
Add comments to clarify the `pointsTo` invariant. In particular, an
entire defer web may have a null pointsTo for a while.
Add an `activeWorklist` to avoid nasty bugs when composing multiple
helpers that each use the worklist.
Remove the `EA` argument from `getNode`. I ended up needing access to
the `EA` context from the ConnectionGraph many times during
prototyping and passing `this` was all the `getNode` calls was very
silly.
Add graph visitor helpers: backwardTraverse, forwardTraverseDefer,
forwardTraversePointsToEdges, and mayReach for ease in developing new
logic and utilities.
Add isExclusiveArgument helper and distinguish exclusive arguments
from local objects. Confusing these properties could lead to scary
bugs. For example, unlike a local object, an exclusive argument's
contents may still escape even when the content's connection graph
node is non-escaping!
Add isUniquelyIdentified helper when we want to treat exclusive
arguments and local objects uniformly.
getUnderlyingAddressRoot now looks through OSSA instructions.
Rename `getAccessedMemory` to `getDirectlyAccessedMemory` with
comments. This is another dangerous API because it assumes the memory
access to a given address won't touch memory represented by different
graph nodes, but graph edges don't necessarily represent physical
indirection. Further clarify this issue in comments in
AliasAnalysis.cpp.
Factor out a 'findRecursiveRefType' helper from the old
'mayContainReference' for checking whether types may or must contain
references. Support both kinds of queries so the analysis can be
certain when a pointer's content is a physical heap object.
Factor out 'getPointerBase' and 'getPointerRoot' helpers that follow
address projections within what EscapeAnalysis will consider a single
node.
Create a CGNodeWorklist abstraction to safely formalize the worklist
mechanism that's used all over the place. In one place, there were
even two separate independent lists used independently (nodes added to
one list could appear to be in the other list).
The CGNodeMap abstraction did not significantly change, it was just moved.
Added 'dumpCG' for dumping .dot files making it possible to remote debug.
Added '-escapes-enable-graphwriter' option to dump .dot files, since
they are so much more useful than the textual dump of the connection
graph, which lacks node identity!
In canEscapeToUsePoint only check the content node if it's a reference (see comment why this is needed).
For all other node types, especially addresses, handle defer edges by propagating use-point infomation backward in the graph.
This makes escape analysis more precise with address types, e.g. don't consider an inout address to escape to an apply if just the loaded value is passed to an apply argument.
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
This disables a bunch of passes when ownership is enabled. This will allow me to
keep transparent functions in ossa and skip most of the performance pipeline without
being touched by passes that have not been updated for ownership.
This is important so that we can in -Onone code import transparent functions and
inline them into other ossa functions (you can't inline from ossa => non-ossa).
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Instead of having the complicated logic of finding the end of an object's lifetime we now use the existing ValueLifetimeAnalysis and StackNesting tools.
This simplifies the implementation a lot and does not use dominator and post-dominator trees anymore.
It's not a NFC because the way how to ensure proper nesting of stack allocations is now different.
To correct the stack nesting, the deallocations are moved down (instead of moving the allocations up).
Also it's now required that there is a final release for the allocation on all paths (which was not the case in some hand-written SIL tests).
Computation of dead-end blocks and escape analysis are now only done on demand. This saves compile time in case a function has no alloc_refs at all.
This patch started with a suggestion from Adrian Prantl to adapt to
LLVM r307953. The code has changed more since then so I modified it
to get it to build and I also fixed up StackPromotion to deal with related
changes. (I did not search back very far but it looks like the StackPromotion
change may have been a latent bug that did not matter much until recent
changes started using the function parameter.)
At some point, pass definitions were heavily macro-ized. Pass
descriptive names were added in two places. This is not only redundant
but a source of confusion. You could waste a lot of time grepping for
the wrong string. I removed all the getName() overrides which, at
around 90 passes, was a fairly significant amount of code bloat.
Any pass that we want to be able to invoke by name from a tool
(sil-opt) or pipeline plan *should* have unique type name, enum value,
commend-line string, and name string. I removed a comment about the
various inliner passes that contradicted that.
Side note: We should be consistent with the policy that a pass is
identified by its type. We have a couple passes, LICM and CSE, which
currently violate that convention.
Remove unused function as identified during a normal compilation:
swift/lib/SILOptimizer/Transforms/StackPromotion.cpp:303:15: warning: unused function 'operator!=' [-Wunused-function]
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
This was already done for getSuccessorBlocks() to distinguish getting successor
blocks from getting the full list of SILSuccessors via getSuccessors(). This
commit just makes all of the successor/predecessor code follow that naming
convention.
Some examples:
getSingleSuccessor() => getSingleSuccessorBlock().
isSuccessor() => isSuccessorBlock().
getPreds() => getPredecessorBlocks().
Really, IMO, we should consider renaming SILSuccessor to a more verbose name so
that it is clear that it is more of an internal detail of SILBasicBlock's
implementation rather than something that one should consider as apart of one's
mental model of the IR when one really wants to be thinking about predecessor
and successor blocks. But that is not what this commit is trying to change, it
is just trying to eliminate a bit of technical debt by making the naming
conventions here consistent.
Before this commit all code relating to handling arguments in SILBasicBlock had
somewhere in the name BB. This is redundant given that the class's name is
already SILBasicBlock. This commit drops those names.
Some examples:
getBBArg() => getArgument()
BBArgList => ArgumentList
bbarg_begin() => args_begin()
The behaviour of ilist has changed in LLVM. It is no longer permissible to
dereference the `end()` value. Add a check to ensure that we do not
accidentally dereference the iterator.
This adds the typedef and switches uses of NodeType * to NodeRef. This is in
preparation for the eventual NodeRef-ization of the GraphTraits in LLVM. NFC.
This broke the test suite under optimizations with a SIL verifier error: "stack dealloc does
not match most recent stack alloc".
This reverts commit 7a2ca23bc2, reversing
changes made to 4c55e8d7a7.
Unreachable blocks prevented stack promotion in some cases.
Now we use our own post-dominator tree which ignores unreachable blocks instead of the standard post-dominator tree provided by the PostDominanceAnalysis.
Unreachable blocks (better: unreachable sub-graphs) are of no interrest because we don't have to insert the dealloc instructions in unreachable blocks anyway.
We were giving special handling to ApplyInst when we were attempting to use
getMemoryBehavior(). This commit changes the special handling to work on all
full apply sites instead of just AI. Additionally, we look through partial
applies and thin to thick functions.
I also added a dumper called BasicInstructionPropertyDumper that just dumps the
results of SILInstruction::get{Memory,Releasing}Behavior() for all instructions
in order to verify this behavior.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.