Many clients of the conformance lookup operations would prefer to get
an invalid conformance (== there is no conformance) rather than a
missing conformance. Parameterize the conformance lookup operations so
that most callers won't see missing conformances, by filtering them
out at the end. Opt-in those callers that do want to see missing
conformances so they can be diagnosed.
Start treating the null {Can}GenericSignature as a regular signature
with no requirements and no parameters. This not only makes for a much
safer abstraction, but allows us to simplify a lot of the clients of
GenericSignature that would previously have to check for null before
using the abstraction.
This is just a straight port of the existing code in the GSB, with minimal changes.
It could be made more efficient in the future by trafficking in Terms rather than
Types, avoiding some intermediate conversion and canonicalization steps.
The new approach is to not look at RequirementSources at all. Instead,
we exhaustively enumerate all conformance access paths, beginning
from the root conformance requirements in the signature, then doing
all conformance requirements from those protocols' requirement
signatures, and so on.
We enumerate conformance access paths in breadth first order by
length until we find the one we want. The results are memoized.
This fixes a regression with another change I'm working on. The
test case does not fail with this PR alone, but I'm adding it now
anyway.
Doing this when computing a canonical signature didn't really
make sense because canonical signatures are not canonicalized
any more strongly _with respect to the builder_; they just
canonicalize their requirement types.
Instead, let's do these checks after creating the signature in
computeGenericSignature().
The old behavior had another undesirable property; since the
canonicalization was done by registerGenericSignatureBuilder(),
we would always build a new GSB from scratch for every
signature we compute.
The new location also means we do these checks for protocol
requirement signatures as well. This flags an existing fixed
crasher where we still emit bogus same-type requirements in
the requirement signature, so I moved this test back into
an unfixed state.
A new implementation from "first principles". The idea is that
for a given conformance, we either have an explicit source
which forms the root of the requirement path, or a derived
source, which we 'factor' into a parent type/parent protocol
pair, and a requirement signature requirement.
We recursively compute the conformance access path of the
parent type and parent protocol, and append the path element
for the requirement.
This fixes a long-standing crasher, and eliminates two hacks,
the 'usesRequirementSource' flag in RequirementSource, and
the 'HadAnyRedundantConstraints' flag in GenericSignatureBuilder.
Fixes https://bugs.swift.org/browse/SR-7371 / rdar://problem/39239511
`PrintOptions` likely started as a small type that made sense to pass by
value, but it's become big enough that passing by const reference is
more efficient now.
Motivation: `GenericSignatureImpl::getCanonicalSignature` crashes for
`GenericSignature` with underlying `nullptr`. This led to verbose workarounds
when computing `CanGenericSignature` from `GenericSignature`.
Solution: `GenericSignature::getCanonicalSignature` is a wrapper around
`GenericSignatureImpl::getCanonicalSignature` that returns the canonical
signature, or `nullptr` if the underlying pointer is `nullptr`.
Rewrite all verbose workarounds using `GenericSignature::getCanonicalSignature`.
By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.
Structurally prevent a number of common anti-patterns involving generic
signatures by separating the interface into GenericSignature and the
implementation into GenericSignatureBase. In particular, this allows
the comparison operators to be deleted which forces callers to
canonicalize the signature or ask to compare pointers explicitly.
This memoizes the result, which is fine for all callers; the only
exception is open existential types where each new open existential
now explicitly gets a unique generic environment, allocated by
calling GenericEnvironment::getIncomplete().
Introduce a request to form an abstract generic signature given a
base signature, additional generic parameters, and additional
requirements. It is meant to provide a caching layer in front of the
generic signature builder.
Switch one direct client of the generic signature builder over to this
mechanism, the formation of a generic signature for an existential
type.
Opaque result type archetypes can involve type variables, which
then get introduced into GenericSignatureBuilders and the
generated GenericSignatures. Allocate them in the proper arena
So we don’t end up with use-after-free errors.
Fixes rdar://problem/50309503.
It's a recursive helper that only captures one argument other than
'this'. Pay the cost of putting a declaration in a commonly-included
header to simplify the code.
No intended functionality change.