Most of the async runtime functions have been changed to not
expect the task and executor to be passed in. When knowing the
task and executor is necessary, there are runtime functions
available to recover them.
The biggest change I had to make to a runtime function signature
was to swift_task_switch, which has been altered to expect to be
passed the context and resumption function instead of requiring
the caller to park the task. This has the pleasant consequence
of allowing the implementation to very quickly turn around when
it recognizes that the current executor is satisfactory. It does
mean that on arm64e we have to sign the continuation function
pointer as an argument and then potentially resign it when
assigning into the task's resume slot.
rdar://70546948
In their previous form, the non-`_f` variants of these entry points were unused, and IRGen
lowered the `createAsyncTask` builtins to use the `_f` variants with a large amount of caller-side
codegen to manually unpack closure values. Amid all this, it also failed to make anyone responsible
for releasing the closure context after the task completed, causing every task creation to leak.
Redo the `swift_task_create_*` entry points to accept the two words of an async closure value
directly, and unpack the closure to get its invocation entry point and initial context size
inside the runtime. (Also get rid of the non-future `swift_task_create` variant, since it's unused
and it's subtly different in a lot of hairy ways from the future forms. Better to add it later
when it's needed than to have a broken unexercised version now.)
I'm about to replace these with new variations that correctly handle spawning a task with
a closure as its initial entry point, without leaking or requiring large amounts of caller-side
code generation.
First, just call an async -> T function instead of forcing the caller
to piece together which case we're in and perform its own copy. This
ensures that the task is actually kept alive properly.
Second, now that we no longer implicitly depend on the waiting tasks
being run synchronously, go ahead and schedule them to run on the
global executor.
This solves some problems which were blocking the work on TLS-ifying
the task/executor state.
This patch has two desirable effects for the price of one.
1. An uncaught error thrown from main will now explode
2. Move us off of using runAsyncAndBlock
The issue with runAsyncAndBlock is that it blocks the main thread
outright. UI and the main actor need to run on the main thread or bad
things happen, so blocking the main thread results in a bad day for
them.
Instead, we're using CFRunLoopRun to run the core-foundation run loop on
the main thread, or, dispatch_main if CFRunLoopRun isn't available.
The issue with just using dispatch_main is that it doesn't actually
guarantee that it will run the tasks on the main thread either, just
that it clears the main queue. We don't want to require everything that
uses concurrency to have to include CoreFoundation either, but dispatch
is already required, which supplies dispatch_main, which just empties
out the main queue.
To help catch runtime issues adopting `withUnsafeContinuation`, such as callback-based APIs that misleadingly
invoke their callback multiple times and/or not at all, provide a couple of classes that can take ownership of
a fresh `UnsafeContinuation` or `UnsafeThrowingContinuation`, and log attempts to resume the continuation multiple times
or discard the object without ever resuming the continuation.
move comments to the wired up continuations
remove duplicated continuations; leep the wired up ones
before moving to C++ for queue impl
trying to next wait via channel_poll
submitting works; need to impl next()
We expect to iterate on this quite a bit, both publicly
and internally, but this is a fine starting-point.
I've renamed runAsync to runAsyncAndBlock to underline
very clearly what it does and why it's not long for this
world. I've also had to give it a radically different
implementation in an effort to make it continue to work
given an actor implementation that is no longer just
running all work synchronously.
The major remaining bit of actor-scheduling work is to
make swift_task_enqueue actually do something sensible
based on the executor it's been given; currently it's
expecting a flag that IRGen simply doesn't know to set.
Switch the contract between the runtime operation `swift_future_task_wait`
and Task.Handle.get() pver to an asynchronous call, so that the
compiler will set up the resumption frame for us. This allows us to
correctly wait on futures.
Update our "basic" future test to perform both normal returns and
throwing returns from a future, either having to wait on the queue or
coming by afterward.
Introduce `FutureAsyncContext` to line up with the async context formed
by IR generation for the type `<T> () async throws -> T`. When allocating
a future task, set up the context with the address of the future's storage
for the successful result and null out the error result, so the caller
will directly fill in the result. This eliminates a bunch of extra
complexity and a copy.
Use a single atomic for the wait queue that combines the status with
the first task in the queue. Address race conditions in waiting and
completing the future.
Thanks to John for setting the direction here for me.
Extend AsyncTask and the concurrency runtime with basic support for
task futures. AsyncTasks with futures contain a future fragment with
information about the type produced by the future, and where the
future will put the result value or the thrown error in the initial
context.
We still don't have the ability to schedule the waiting tasks on an
executor when the future completes, so this isn't useful for anything
just test, and we can only test limited code paths.