This instruction is similar to a copy_addr except that it marks a move of an
address that has to be checked. In order to keep the memory lifetime verifier
happy, the semantics before the checker runs are the mark_unresolved_move_addr is
equivalent to copy_addr [init] (not copy_addr [take][init]).
The use of this instruction is that Mandatory Inlining converts builtin "move"
to a mark_unresolved_move_addr when inlining the function "_move" (the only
place said builtin is invoked).
This is then run through a special checker (that is later in this PR) that
either proves that the mark_unresolved_move_addr can actually be a move in which
case it converts it to copy_addr [take][init] or if it can not be a move, emit
an error and convert the instruction to a copy_addr [init]. After this is done
for all instructions, we loop back through again and emit an error on any
mark_unresolved_move_addr that were not processed earlier allowing for us to
know that we have completeness.
NOTE: The move kills checker for addresses is going to run after Mandatory
Inlining, but before predictable memory opts and friends.
Required for UnsafeRawPointer.withMemoryReboud(to:).
%out_token = rebind_memory %0 : $Builtin.RawPointer to %in_token
%0 must be of $Builtin.RawPointer type
%in_token represents a cached set of bound types from a prior memory state.
%out_token is an opaque $Builtin.Word representing the previously bound
types for this memory region.
This instruction's semantics are identical to ``bind_memory``, except
that the types to which memory will be bound, and the extent of the
memory region is unknown at compile time. Instead, the bound-types are
represented by a token that was produced by a prior memory binding
operation. ``%in_token`` must be the result of bind_memory or
The key thing is that the move checker will not consider the explicit copy value
to be a copy_value that can be rewritten, ensuring that any uses of the result
of the explicit copy_value (consuming or other wise) are not checked.
Similar to the _move operator I recently introduced, this is a transparent
function so we can perform one level of specialization and thus at least be
generic over all concrete types.
Fix two bugs:
- FirstArgOwnershipForwardingSingleValueInst needs to forward its first operand.
- select_value needs to be a ForwardedBorrow for all cases and the default.
Changed the frontend flag to -enable-experimental-lexical-lifetimes from
-enable-experimental-defined-lifetimes.
Changed the attribute on begin_borrow from [defined] to [lexical].
The new flag will be used to track whether a borrow scope corresponds to
a source-level lexical scope. Here, the flag is just documented, added
to the instruction, represented in textual and serialized SIL, and
cloned.
Support for addresses with arbitrary alignment as opposed to their
element type's natural in-memory alignment.
Required for bytestream encoding/decoding without resorting to memcpy.
SIL instruction flag, documentation, printing, parsing, serialization,
and IRGen.
This is a new instruction that can be used by SILGen to perform a semantic move
in between two entities that are considered separate variables at the AST
level. I am going to use it to implement an experimental borrow checker.
This PR contains the following:
1. I define move_value, setup parsing, printing, serializing, deserializing,
cloning, and filled in all of the visitors as appropriate.
2. I added createMoveValue and emitMoveValueOperation SILBuilder
APIs. createMoveValue always creates a move and asserts is passed a trivial
type. emitMoveValueOperation in contrast, will short circuit if passed a
trivial value and just return the trivial value.
3. I added IRGen tests to show that we can push this through the entire system.
This is all just scaffolding for the instruction to live in SIL land and as of
this PR doesn't actually do anything.
This patch replace all in-memory objects of DebugValueAddrInst with
DebugValueInst + op_deref, and duplicates logics that handles
DebugValueAddrInst with the latter. All related check in the tests
have been updated as well.
Note that this patch neither remove the DebugValueAddrInst class nor
remove `debug_value_addr` syntax in the test inputs.
The new flag will be used to track whether a borrow scope corresponds to
a source-level lexical scope. Here, the flag is just added to the
instruction and represented in textual and serialized SIL.
SILGen this builtin to a mandatory hop_to_executor with an actor type
operand.
e.g.
Task.detached {
Builtin.hopToActor(MainActor.shared)
await suspend()
}
Required to fix a bug in _runAsyncMain.
These checks used to be in the SILVerifier only so one had to drop down into the
debugger to figure out where a pass actually introduced the bad location. With
this change, we abort immediately in the place in the code where the problem
happens allowing for one to quickly fix the problems.
Instead, put the archetype->instrution map into SIlModule.
SILOpenedArchetypesTracker tried to maintain and reconstruct the mapping locally, e.g. during a use of SILBuilder.
Having a "global" map in SILModule makes the whole logic _much_ simpler.
I'm wondering why we didn't do this in the first place.
This requires that opened archetypes must be unique in a module - which makes sense. This was the case anyway, except for keypath accessors (which I fixed in the previous commit) and in some sil test files.
Through various means, it is possible for a synchronous actor-isolated
function to escape to another concurrency domain and be called from
outside the actor. The problem existed previously, but has become far
easier to trigger now that `@escaping` closures and local functions
can be actor-isolated.
Introduce runtime detection of such data races, where a synchronous
actor-isolated function ends up being called from the wrong executor.
Do this by emitting an executor check in actor-isolated synchronous
functions, where we query the executor in thread-local storage and
ensure that it is what we expect. If it isn't, the runtime complains.
The runtime's complaints can be controlled with the environment
variable `SWIFT_UNEXPECTED_EXECUTOR_LOG_LEVEL`:
0 - disable checking
1 - warn when a data race is detected
2 - error and abort when a data race is detected
At an implementation level, this introduces a new concurrency runtime
entry point `_checkExpectedExecutor` that checks the given executor
(on which the function should always have been called) against the
executor on which is called (which is in thread-local storage). There
is a special carve-out here for `@MainActor` code, where we check
against the OS's notion of "main thread" as well, so that `@MainActor`
code can be called via (e.g.) the Dispatch library's
`DispatchQueue.main.async`.
The new SIL instruction `extract_executor` performs the lowering of an
actor down to its executor, which is implicit in the `hop_to_executor`
instruction. Extend the LowerHopToExecutor pass to perform said
lowering.
If the '[poison]' flag is set, then all references within this debug
value will be overwritten with a sentinel at this point in the
program. This is used in debug builds when shortening non-trivial
value lifetimes to ensure the debugger cannot inspect invalid
memory. `debug_value` instructions with the poison flag are not
generated until OSSA islowered. They are not expected to be serialized
within the module, and the pipeline is not expected to do any
significant code motion after lowering.
Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
* Refactoring: replace "Destination" and the ownership qualifier by a single "Mode". This represents much better the mode how the instruction is to be lowered. NFC
* Make assign_by_wrapper printable and parseable.
* Fix lowering of the assign modes for indirect results of the init-closure: The indirect result was initialized and not assigned to. The fix is to insert a destroy_addr before calling the init closure. This fixes a memory lifetime error and/or a memory leak. Found by inspection.
* Fix an iterator-invalidation crash in RawSILInstLowering
* Add tests for lowering assign_by_wrapper.
cloning
forwardingOwnershipKind can differ from the operand's ownershipKind. We
need to copy forwardingOwnershipKind while cloning these instructions.
Also print the forwarding ownership kind when it differs from its
operand's ownershipKind
This is a follow up of #36063
The forwardingOwnershipKind need not be the same as operandOwnershipKind
after optimizations like SILCombine. While cloning, make sure to
propagate this correctly, if not this results in unnecessary ownership
verifier errors.
NOTE: I also added a partial_apply [guaranteed] test.
Whats interesting about these is that we only ever perform allocbox_to_stack if
we know that we are going to eliminate the allocbox completely. So if we break
dominance among some uses of the alloc box or insert destroy_value when we are
in non-ossa... it doesn't matter since we will eliminate the box and these uses
before the pass is done running.
This will harmless on the surface is an instance of the compiler being in a
"fixed point of correctness". This occurance is when the compiler implementation
is incorrect but the incorrectness is being hidden in the final output. If the
output of the compiler changes or the code in question is changed, new bugs can
be introduced due to the lack of preserving of standard invariants like
dominance.
I also added an additional helper: SILBuilder::insertAfter(SILValue). This
builds on Erik's commit that gave us insert(SILInstruction *). I wanted this
functionality, but additionally I wanted to make it so that if I had an
argument, I got back the first instruction in the block. So it was natural to
extend this to values.
I also added const to a few methods as well.
This is useful when using:
```
SILBuilderWithScope::insertAfter(function_ref<void (SILBuilder)>)
```
to create instructions using the SILBuilder's insertion point's loc.
This makes it easier to understand conceptually why a ValueOwnershipKind with
Any ownership is invalid and also allowed me to explicitly document the lattice
that relates ownership constraints/value ownership kinds.
This allows us to hoist the error case of having a function signature with
conflicting ownership requirements into the creation of the return inst instead
of at the time of computing Operand Constraints.
This is the last part of the Operand Constraint computation that can fail that
once removed will let me use fail to mean any constriant is allowed.
This instructions ensures that all instructions, which need to run on the specified executor actually run on that executor.
For details see the description in SIL.rst.