* unify FunctionPassContext and InstructionPassContext
* add a modification API: PassContext.setOperand
* automatic invalidation notifications when the SIL is modified
StackList is a very efficient data structure for worklist type things.
This is a port of the C++ utility with the same name.
Compared to Array, it does not require any memory allocations.
With the macro SWIFT_FUNCTION_PASS a new libswift function pass can be defined in Passes.def.
The SWIFT_FUNCTION_PASS_WITH_LEGACY is similar, but it allows to keep an original C++ “legacy” implementation of the pass, which is used if the compiler is not built with libswift.
Instead of caching alias results globally for the module, make AliasAnalysis a FunctionAnalysisBase which caches the alias results per function.
Why?
* So far the result caches could only grow. They were reset when they reached a certain size. This was not ideal. Now, they are invalidated whenever the function changes.
* It was not possible to actually invalidate an alias analysis result. This is required, for example in TempRValueOpt and TempLValueOpt (so far it was done manually with invalidateInstruction).
* Type based alias analysis results were also cached for the whole module, while it is actually dependent on the function, because it depends on the function's resilience expansion. This was a potential bug.
I also added a new PassManager API to directly get a function-base analysis:
getAnalysis(SILFunction *f)
The second change of this commit is the removal of the instruction-index indirection for the cache keys. Now the cache keys directly work on instruction pointers instead of instruction indices. This reduces the number of hash table lookups for a cache lookup from 3 to 1.
This indirection was needed to avoid dangling instruction pointers in the cache keys. But this is not needed anymore, because of the new delayed instruction deletion mechanism.
* Fix the mid-level pass pipeline.
Module passes need to be in a separate pipeline, otherwise the
pipeline restart mechanism will be broken.
This makes GlobalOpt and serialization run earlier in the
pipeline. There's no explicit reason for them to be run later, in the
middle of a function pass pipeline.
Also, pipeline boundaries, like serialization and module passes should
be explicit at the the top level function that creates the pass
pipelines.
* SILOptimizer: Add enforcement of function-pass pipelines.
Don't allow module passes to be inserted within a function pass
pipeline. This silently breaks the function pipeline both interfering
with analysis and the normal pipeline restart mechanism.
* Add misssing pass in addFunctionPasses
Co-authored-by: Andrew Trick <atrick@apple.com>
-sil-verify-all flag will verify analyses before and after a pass to
confirm correct invalidations. But if an analysis was never
constructed or invalidated as per current pass order,
it may never detect insufficient invalidations.
-sil-verify-force-analysis will force construct an analysis so that we
can better check for insufficient invalidations.
It is also terribly slow compared to -sil-verify-all.
Add ExecuteSILPipelineRequest which executes a
pipeline plan on a given SIL (and possibly IRGen)
module. This serves as a top-level request for
the SILOptimizer that we'll be able to hang
dependencies off.
Rather than registering individual IRGen passes
when we want to execute them, store function
pointers to all the pass constructors on the
ASTContext. This will make it easier to requestify
the execution of pass pipelines.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
This name makes it clear that the function has not yet been deleted and also
contrasts with the past tense used in the API notifyAddedOrModifiedFunction to
show that said function has already added/modified the function.
The name notifyAddFunction is actively harmful since the pass manager uses this
entrypoint to notify analyses of added *OR* modified functions. It is up to the
caller analysis to distinguish in between these cases.
I am not vouching for the design, just trying to make names match the
current behavior.
* rename "Name" to "Description" in the pass definition, because it's not really the pass name, but the description of a pass
* remove the getName() from Transforms (which actually returned the description of a pass)
* in debug printing, print the pass ID and not the pass description. It makes it easier to correlate the debug output to the actual pass implementation.
* remove the iteration numbering in the pass manager, because we only run a single iteration anyway.
This commit is mostly refactoring.
*) Introduce a new OptimizationMode enum and use that in SILOptions and IRGenOptions
*) Allow the optimization mode also be specified for specific SILFunctions. This is not used in this commit yet and thus still a NFC.
Also, fixes a minor bug: we didn’t run mandatory IRGen passes for functions with @_semantics("optimize.sil.never")
This patch implements collection and dumping of statistics about SILModules, SILFunctions and memory consumption during the execution of SIL optimization pipelines.
The following statistics can be collected:
* For SILFunctions: the number of SIL basic blocks, the number of SIL instructions, the number of SIL instructions of a specific kind, duration of a pass
* For SILModules: the number of SIL basic blocks, the number of SIL instructions, the number of SIL instructions of a specific kind, the number of SILFunctions, the amount of memory used by the compiler, duration of a pass
By default, any collection of statistics is disabled to avoid affecting compile times.
One can enable the collection of statistics and dumping of these statistics for the whole SILModule and/or for SILFunctions.
To reduce the amount of produced data, one can set thresholds in such a way that changes in the statistics are only reported if the delta between the old and the new values are at least X%. The deltas are computed as using the following formula:
Delta = (NewValue - OldValue) / OldValue
Thresholds provide a simple way to perform a simple filtering of the collected statistics during the compilation. But if there is a need for a more complex analysis of collected data (e.g. aggregation by a pipeline stage or by the type of a transformation), it is often better to dump as much data as possible into a file using e.g. -sil-stats-dump-all -sil-stats-modules -sil-stats-functions and then e.g. use the helper scripts to store the collected data into a database and then perform complex queries on it. Many kinds of analysis can be then formulated pretty easily as SQL queries.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
There are now separate functions for function addition and deletion instead of InvalidationKind::Function.
Also, there is a new function for witness/vtable invalidations.
rdar://problem/29311657
This pipeline is run as part of IRGen and has access to the IRGenModule.
Passes that run as part of this pipeline can query for the IRGenModule.
We will use it for the AllocStackHoisting pass. It wants to know if a type is of
non-fixed size.
To break the cyclic dependency between IRGen -> SILOptimizer -> IRGen that would
arise from the SILPassManager having to know about the createIRGENPASS()
function IRGen passes instead of exposing this function dynamically have to add
themselves to the pass manager.
We also either remove or make private the addPass* functions on SILPassManager,
so the only way to execute passes via SILPassManager is by creating a
SILPassPipelinePlan. This beyond adding uniformity ensures that we always
resetAndRemoveTransformations properly after a pipeline is run.
This commit adds the functionality, but does not change SILPassManager to use
it. The reason why I am doing this is so I can implement sil-opt pass bisecting
functionality in python using a tool that dumps the current pass pipelines
out. This will ensure that even in the face of changes to the pass pipelines,
everything should just work.
This re-instates commit de9622654d
The problem of the infinite loop should be fixed by the previous fix in FunctionSignatureOpts.
In addition this new commit implements a safety check to void such cases, even if buggy optimizations try to keep pushing new functions onto the work list.
Instead the pipeline is continued on the old function. This happens when a pass pushes a new, e.g. specialized function, on the function stack.
There is no need to repeat passes which already did run on a function.
It saves a little of compile time and I didn't see any significant impact on code size or performance.
It also simplifies the pass manager.
Add an invalidateAnalysisForDeadFunction API. This API calls the invalidateAnalysis
by default unless overriden by analysis pass themselves. This API passes the extra
information that this function is dead and going to be removed from the module.
CallerAnalysis overrides this API and only invalidate caller/callee relations but
does not push this into the recompute list.
We also considered the possibility of keeping a computed list, instead of recompute
list but that would introduce a O(n^2) complexity as every time we try to complete
the computed list, we need to walk over all the functions that currently exist in the
module to make sure the computed list is complete.
I feel eventually we can do a handleDeleteNotification for function deletion and we
wont need the API added in this change.
Address the comments from 0acc0a8464
I still have not made up my mind how to handle deleted functions.
CallerAnalysis is not hooked up to anything yet.
The analysis can tell all the callsites which calls a function in the module.
The analysis is computed and kept up-to-date lazily.
At the core of it, it keeps a list of functions that need to be recomputed for
the Caller/Callee relation to be precise and on every query, the analysis makes
sure to recompute them and clear the list before any query.
This is NFC right now. I am going to wire it up to function signature analysis
eventually.
Allow function passes to:
1. Add new functions, to be optimized before continuing with the current
function.
2. Restart the pipeline on the current function after the current pass
completes.
This makes it possible to fully optimize callees that are the result of
specialization prior to generating interprocedural information or making
inlining choices about these callees.
It also allows us to solve a phase-ordering issue we have with generic
specialization, devirtualization, and inlining, by rescheduling the
current function after changes happen in one of these passes as opposed
to running all of these as part of the inlining pass as happens today.
Currently this is NFC since we have no passes that use this
functionality.
Add interfaces and update the pass execution logic to allow function
passes to create new functions, or ask for functions to be optimized
prior to continuing.
Doing so results in the pass pipeline halting execution on the current
function, and continuing with newly added functions, returning to the
previous function after the newly added functions are fully optimized.