The `@noDerivative` attribute marks the non-differentiability parameters of a
`@differentiable` function type. All parameters except those marked with
`@noDerivative` are differentiability parameters.
For example, `@differentiable (Float, @noDerivative Float) -> Float` is only
differentiable with respect to its first parameter.
The `@noDerivative` attribute is represented as a
`SILParameterDifferentiability` bit on `SILParameterInfo`.
Add round-trip serialization tests.
Resolves TF-872.
Adds a tool `swift-symbolgraph-extract` that reads an existing Swift
module and prints a platform- and language-agnostic JSON description of
the module, primarly for documentation.
Adds a small sub-library `SymbolGraphGen` which houses the core
implementation for collecting relevant information about declarations.
The main entry point is integrated directly into the driver as a mode:
the tool is meant to be run outside of the normal edit-compile-run/test
workflow to avoid impacting build times.
Along with common options for other tools, unique options include
`pretty-print` for debugging, and a `minimum-access-level` options for
including internal documentation.
A symbol graph is a directed graph where the nodes are symbols in a
module and the edges are relationships between them. For example, a
`struct S` may have a member `var x`. The graph would have two nodes for
`S` and `x`, and one "member-of" relationship edge. Other relationship
kinds include "inherits-from" or "conforms to". The data format for a
symbol graph is still under development and may change without notice
until a specificiation and versioning scheme is published.
Various aspects about a symbol are recorded in the nodes, such as
availability, documentation comments, or data needed for printing the
shapes of declarations without having to understand specifics about the
langauge.
Implicit and public-underscored stdlib declarations are not included by
default.
rdar://problem/55346798
instead of AssociatedTypeDecl::getInherited() when checking if the
return type should be suggested as "opaque result type" in override
completion.
AssociatedTypeDecl::getInherited() is not serialized. So if the protocol
is declared in a module, it was never suggested as 'some' result.
rdar://problem/57245073
This reverts commit e805fe486e, which reverted
the change earlier. The problem was caused due to a simultaneous change to some
code by the PR with parsing and printing for Clang function types (#28737)
and the PR which introduced Located<T> (#28643).
This commit also includes a small change to make sure the intersecting region
is fixed: the change is limited to using the fields of Located<T> in the
`tryParseClangType` lambda.
This type wraps a DeclName, indicating that it is a reference to a declaration that exists somewhere else and it requires slightly “fuzzy” comparison (i.e. if it’s not compound, only the base names should be compared). DeclName::matchesRef() and MemberLookupTable::find() both now take a DeclNameRef instead of a DeclName.
This commit temporarily allows implicit conversion from DeclName; I’ll flip the switch on that in a later commit.
Replaces `ComponentIdentTypeRepr::getIdentifier()` and `getIdLoc()` with `getNameRef()` and `getNameLoc()`, which use `DeclName` and `DeclNameRef` respectively.
Previously, we would print
```swift
public private(set) var x: Int
```
as
```swift
@_hasStorage public var x: Swift.Int {
get
}
```
which is a) incorrectly indented, and b) shouldn't have newlines in part
of the Generated Interface.
Fixes [SR-9816](https://bugs.swift.org/browse/SR-9816)
An awful pattern we use throughout the compiler is to save and restore global flags just for little things. In this case, it was just to turn on some extra options in AST printing for type variables. The kicker is that the ASTDumper doesn't even respect this flag. Add this as a PrintOption and remove the offending save-and-restores.
This doesn't quite get them all: we appear to have productized this pattern in the REPL.
This commit introduces a request to type-check a
default argument expression and splits
`getDefaultValue` into 2 accessors:
- `getStructuralDefaultExpr` which retrieves the
potentially un-type-checked default argument
expression.
- `getTypeCheckedDefaultExpr` which retrieves a
fully type-checked default argument expression.
In addition, this commit adds `hasDefaultExpr`,
which allows checking for a default expr without
kicking off a request.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
Switch most callers to explicit indices. The exceptions lie in things that needs to manipulate the parsed output directly including the Parser and components of the ASTScope. These are included as friend class exceptions.
VarDecls inherit their TypeRepr from their enclosing pattern, if any.
To retrieve the TypeRepr attached to a VarDecl or a ParamDecl in
a uniform way, the getTypeReprOrParentPatternTypeRepr API has been
provided.
TypeCheckPattern used to splat the interface type into this, and
different parts of the compiler would check one or the other. There is
now one source of truth: The interface type. The type repr is now just
a signal that the user has written an explicit type annotation on
a parameter. For variables, we will eventually be able to just grab
this information from the parent pattern.