By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
When an EnumElementDecl is parsed, we create the parameter list before
creating the EnumElementDecl itself, so we have to re-parent those
ParamDecls just like we do for functions and subscripts.
Like the last commit, SourceFile is used a lot by Parse and Sema, but
less so by the ClangImporter and (de)Serialization. Split it out to
cut down on recompilation times when something changes.
This commit does /not/ split the implementation of SourceFile out of
Module.cpp, which is where most of it lives. That might also be a
reasonable change, but the reason I was reluctant to is because a
number of SourceFile members correspond to the entry points in
ModuleDecl. Someone else can pick this up later if they decide it's a
good idea.
No functionality change.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
Rework the lazy function body parsing mechanism to use the
request-evaluator, so that asking for the body of a function will
initiate parsing. Clean up a number of callers to
AbstractFunctionDecl::getBody() that don't actually need the body, so
we don't perform unnecessary parsing.
This change does not delay parsing of function bodies in the general
case; rather, it sets up the infrastructure to always delay parsing of
function bodies.
Rework the lazy function body parsing mechanism to use the
request-evaluator, so that asking for the body of a function will
initiate parsing. Clean up a number of callers to
AbstractFunctionDecl::getBody() that don't actually need the body, so
we don't perform unnecessary parsing.
This change does not delay parsing of function bodies in the general
case; rather, it sets up the infrastructure to always delay parsing of
function bodies.
Note that in all cases it was either nullptr or ctx.getLazyResolver().
While passing in nullptr might appear at first glance to mean something
("don't type check anything"), in practice we would check for a nullptr
value and pull out ctx.getLazyResolver() instead. Furthermore, with
the lazy resolver going away (at least for resolveDeclSignature() calls),
it won't make sense to do that anymore anyway.
PatternBindingInitializer may not be attached to any
PatternBindingDecl. e.g.
struct S {
@CustomAttr(something)
}
In this case DeclContext for 'something' is PatternBindingInitializer,
but it doesn't have PatternBindingDecl because it's not written yet.
Fixes a crash in code-completion.
rdar://problem/53034550