- Frontend: Implicitly import `_StringProcessing` when frontend flag `-enable-experimental-string-processing` is set.
- Type checker: Set a regex literal expression's type as `_StringProcessing.Regex<(Substring, DynamicCaptures)>`. `(Substring, DynamicCaptures)` is a temporary `Match` type that will help get us to an end-to-end working system. This will be replaced by actual type inference based a regex's pattern in a follow-up patch (soon).
- SILGen: Lower a regex literal expression to a call to `_StringProcessing.Regex.init(_regexString:)`.
- String processing runtime: Add `Regex`, `DynamicCaptures` (matching actual APIs in apple/swift-experimental-string-processing), and `Regex(_regexString:)`.
Upcoming:
- Build `_MatchingEngine` and `_StringProcessing` modules with sources from apple/swift-experimental-string-processing.
- Replace `DynamicCaptures` with inferred capture types.
* add an option to add freestanding to the Darwin platform, so that
to get expected compile behaviours (e.g. setting the install name)
* rework testing configuration to relax assumptions about freestanding
* add a preset to test such configuration (at least for PR testing)
Addresses rdar://85465396
To send them across actors, they need to be wrapped in an '@unchecked
Sendable' type. Typically such a wrapper type would be be responsible
for ensuring its uniqueness or immutability.
Inferring Sendability for arbitrary types that contain Unsafe*Pointers
would introduce race conditions without warning or any explicit
acknoledgement from the programmer that the pointer is in fact unique.
* Enforce using headers from Swift's LLVMSupport fork and not llvm-project when building stdlib
* [LLVMSupport] Re-import LLVMSupport .cpp and .h files from 9ff3a9759b7c2f146e7f46e4aebc60453c577c5a from apple/llvm-project
Done via the following commands, while having llvm-project checked out at 9ff3a9759b7c2f146e7f46e4aebc60453c577c5a, a
commit on the stable/20210726 branch of apple/llvm-project, <9ff3a9759b>:
for i in swift/stdlib/public/LLVMSupport/*.cpp ; do cp llvm-project/llvm/lib/Support/$(basename $i) $i ; done
for i in swift/stdlib/include/llvm/ADT/*.h; do cp llvm-project/llvm/include/llvm/ADT/$(basename $i) $i ; done
for i in swift/stdlib/include/llvm/Support/*.h; do cp llvm-project/llvm/include/llvm/Support/$(basename $i) $i ; done
cp llvm-project/llvm/include/llvm/ADT/ScopeExit.h swift/stdlib/include/llvm/ADT/ScopeExit.h
cp llvm-project/llvm/include/llvm/ADT/Twine.h swift/stdlib/include/llvm/ADT/Twine.h
cp llvm-project/llvm/include/llvm/Support/raw_ostream.h swift/stdlib/include/llvm/Support/raw_ostream.h
* [LLVMSupport] Re-namespace the LLVMSupport fork after re-forking by re-applying b72788c27a
More precisely:
1) git cherry-pick b72788c27a
2) manually resolve the conflict in AlignOf.h by keeping the HEAD's version of the chunk and discarding the cherry-pick's change
3) git add AlignOf.h
4) git status | grep "deleted by us" | awk '{print($4)}' | xargs git rm
5) git cherry-pick --continue
Original namespacing commit message:
> This adds the `__swift::__runtime` inline namespace to the LLVMSupport
> interfaces. This avoids an ODR violation when LLVM and Swift are in the
> same address space. It also will aid in the process of pruning the
> LLVMSupport library by ensuring that accidental leakage of the llvm
> namespace does not allow us to remove symbols which we rely on.
* [LLVMSupport] Re-apply "pruning" on re-forked LLVMSupport from bb102707ed
This re-applies the "pruning" commit from bb102707ed, which did the following:
- Remove many whole files,
- Remove "epoch tracking" and "reverse iteration" support from ADT containers
- Remove "ABI break checking" support from STLExtras
- Remove float parsing functions from StringExtras.h
- Remove APInt/APSInt dependencies from StringRef.h + StringRef.cpp (edit distance, int parsing)
- Remove some variants of error handling and dependency of dbgs() from ErrorHandling.h and ErrorHandling.cpp
We don't need to do the whole-file-removal step, because that's already done, but the rest is re-applied by doing:
1) git cherry-pick bb102707ed
2) manually resolving conflict in ADT/DenseMap.h by keeping HEAD's version of the chunk and removing epoch tracking from it
3) manually resolving conflict in ADT/STLExtras.h by keeping HEAD's version of the chunk and removing ABI check checking from it
4) manually resolving conflict in ADT/StringExtras.h by deleting the whole chunk (removing APInt/APSInt dependent functions)
5) manually resolving conflict in ErrorHandling.cpp by force-applying the cherry-pick's version (removing write() calls and OOM callback)
6) manually resolving the three conflicts in CMakeLists.txt files by keeping HEAD's version completely
7) git add stdlib/include/llvm/{ADT/StringSwitch.h,ADT/Twine.h,Support/raw_ostream.h}
Original commit description:
> Reduce LLVMSupport to the subset required for the runtime. This reduces
> the TCB and the overheads of the runtime. The inline namespace's
> preservation ensures that ODR violations do not occur.
* [LLVMSupport] Re-apply all post-import modifications on LLVMSupport that the Swift's fork has
Since the previous commits re-imported "vanilla" versions of LLVMSupport, we need to re-apply all modifications that the Swift's fork has made since the last import. More precisely:
1) git diff 7b70120440cd39d67a595a7d0ea4e828ecc6ee44..origin/main -- stdlib/include/llvm stdlib/public/LLVMSupport | git apply -3 --exclude "stdlib/include/llvm/Support/DataTypes.h" --exclude "stdlib/include/llvm/Config/llvm-config.h.cmake"
2) manually resolve conflict in STLExtras.h by applying the "__swift::__runtime" prefix to HEAD's version
3) manually resolve conflicts in StringSwitch.h by keeping HEAD's version (removing the Unicode BOM marker at the beginning of the file, keeping LLVM's version of the string functions)
4) manually resolve conflict in SwapByteOrder.h by adding the `defined(__wasi__)` part into the #if
* [LLVMSupport] Drop remaining dependencies on APSInt.h, Error.h, DataTypes.h and STLForwardCompat.h
Most cases can drop the #includes without any changes, in some cases there are
straighforward replacements (climits, cstdint). For STLForwardCompat.h, we need
to bring in parts of STLForwardCompat.h from llvm-project.
* [LLVMSupport] Remove raw_ostream.h and drop dependencies to it from the runtime
* [LLVMSupport] Simplify error reporting in SmallVector and avoid using std::string when producing fatal errors messages
Co-authored-by: Saleem Abdulrasool <compnerd@compnerd.org>
The usage of libdispatch in Concurrency is dynamic - it does not
explicitly link against libdispatch and thus cannot directly invoke
`dispatch_main`. While linking against dispatch would be ideal, this
should improve the current path.
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
Unfortunately using the convenient "bootstrapping0-all", etc. custom targets does not work.
For some reason it does not cause a dependent file (like libswift's SIL.o) being rebuilt when a depenency (like swift-frontend from the previous bootstrapping stage) changes.
Instead we have to list al library- and executable-targets explicitly.
The 32-bit identifier in Job is locked down at this point, so we expand the ID by storing the top 32 bits separately inside AsyncTask::PrivateStorage.
rdar://85167409
This fixes a latent UB instance in the `DefaultActor` implementation
that has haunted the Windows target. The shared constructor for the
type caused an errant typo that happened to compile which introduced
UB but happened to work for the non-Windows cases. This happened to
work for the other targets as `swift::atomic` had a `std::atomic` at
on most configurations, and the C delegate for the Actor initializer
happened to overlap and initialize the memory properly. The Windows
case used an inline pointer width value but would be attempted to be
initialized as a `std::atomic`. Relying on the overlap is unsafe to
assume, and we should use the type's own constructor which delegates
appropriately.
These modules are part of the experimental declarative string processing feature. If accepted to the Standard Library, _StringProcessing will be available via implicit import just like _Concurrency, though _MatchingEngine will still be hidden as an implementation detail.
`_MatchingEngine` will contain the general-purpose pattern matching engine ISA, bytecode, and executor. `_StringProcessing` will contain regular expression and pattern matching APIs whose implementation depends on the matching engine..
Also consolidates frontend flag `-enable-experimental-regex` as `-enable-experimental-string-processing`.
Resolves rdar://85478647.
There is an unescaped reference to type `Substring`. I think a plain lowercased reference would read better. Alternatively we could escape it with backquotes.