A destroy_addr also involves a read from the address. It's equivalent to a `%x = load [take]` and `destroy_value %x`.
It's also a write, because the stored value is not available anymore after the destroy.
Fixes a compiler crash in SILMem2Reg.
rdar://103879105
This is consistent with `Type.isTrivial`.
Also, introduce corresponding properties in `Value`: `hasTrivialType` and `hasTrivialNonPointerType`, because
1. It's less to type than `Type.isTrivial(in: function)` because `Value` knows in which function it is.
2. It fixes the corner case where value is an `Undef`, which has not parent function.
Functions "are deinit barriers" (more pedantically, applies of functions
are deinit barriers) if any of their instructions are deinit barriers.
During side-effect analysis, when walking a function's instructions for
other global effects, also check for the deinit-barrier effect. If an
instruction is found to be a deinit barrier, mark the function's global
effects accordingly.
Add SILFunction::isDeinitBarrier to conveniently access the effects
computed during ComputeSideEffects.
Update the isBarrierApply predicate to iterate over the list of callees,
if complete, to check whether any is a deinit barrier. If none is, then
the apply is not a deinit barrier.
Computes the side effects for a function, which consists of argument- and global effects.
This is similar to the ComputeEscapeEffects pass, just for side-effects.