Determining a descriptor's size requires reading its contents, but reading its contents from out of process requires knowing its size.
Build up the size incrementally by walking over the TrailingObjects. Take advantage of the fact that each trailing object's presence/count depends only on data that comes before it. This allows us to read prefixes that we gradually expand until we've covered the whole thing.
Add calls to TrailingObjects to allow iterating over the prefix sizes, and modify readContextDescriptor to use them. This replaces the old code which attempted to determine the descriptor size in an ad-hoc fashion that didn't always get it right.
rdar://146006006
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
Introduce metadata and runtime support for describing conformances to
"suppressible" protocols such as `Copyable`. The metadata changes occur
in several different places:
* Context descriptors gain a flag bit to indicate when the type itself has
suppressed one or more suppressible protocols (e.g., it is `~Copyable`).
When the bit is set, the context will have a trailing
`SuppressibleProtocolSet`, a 16-bit bitfield that records one bit for
each suppressed protocol. Types with no suppressed conformances will
leave the bit unset (so the metadata is unchanged), and older runtimes
don't look at the bit, so they will ignore the extra data.
* Generic context descriptors gain a flag bit to indicate when the type
has conditional conformances to suppressible protocols. When set,
there will be trailing metadata containing another
`SuppressibleProtocolSet` (a subset of the one in the main context
descriptor) indicating which suppressible protocols have conditional
conformances, followed by the actual lists of generic requirements
for each of the conditional conformances. Again, if there are no
conditional conformances to suppressible protocols, the bit won't be
set. Old runtimes ignore the bit and any trailing metadata.
* Generic requirements get a new "kind", which provides an ignored
protocol set (another `SuppressibleProtocolSet`) stating which
suppressible protocols should *not* be checked for the subject type
of the generic requirement. For example, this encodes a requirement
like `T: ~Copyable`. These generic requirements can occur anywhere
that there is a generic requirement list, e.g., conditional
conformances and extended existentials. Older runtimes handle unknown
generic requirement kinds by stating that the requirement isn't
satisfied.
Extend the runtime to perform checking of the suppressible
conformances on generic arguments as part of checking generic
requirements. This checking follows the defaults of the language, which
is that every generic argument must conform to each of the suppressible
protocols unless there is an explicit generic requirement that states
which suppressible protocols to ignore. Thus, a generic parameter list
`<T, Y where T: ~Escapable>` will check that `T` is `Copyable` but
not that it is `Escapable`, and check that `U` is both `Copyable` and
`Escapable`. To implement this, we collect the ignored protocol sets
from these suppressed requirements while processing the generic
requirements, then check all of the generic arguments against any
conformances not suppressed.
Answering the actual question "does `X` conform to `Copyable`?" (for
any suppressible protocol) looks at the context descriptor metadata to
answer the question, e.g.,
1. If there is no "suppressed protocol set", then the type conforms.
This covers types that haven't suppressed any conformances, including
all types that predate noncopyable generics.
2. If the suppressed protocol set doesn't contain `Copyable`, then the
type conforms.
3. If the type is generic and has a conditional conformance to
`Copyable`, evaluate the generic requirements for that conditional
conformance to answer whether it conforms.
The procedure above handles the bits of a `SuppressibleProtocolSet`
opaquely, with no mapping down to specific protocols. Therefore, the
same implementation will work even with future suppressible protocols,
including back deployment.
The end result of this is that we can dynamically evaluate conditional
conformances to protocols that depend on conformances to suppressible
protocols.
Implements rdar://123466649.
When detecting that an associated type's substituted type is an opaque type, read out its opaque type descriptor to collect the names of protocols it must conform to.
Tidy up the metadata definitions.
* Generalize a number of metadata kinds for out-of-process clients
* Introduce conveniences to make runtime lookups easier
* Introduce TargetExistentialTypeExpression to TrailingObjects stops complaining about OverloadTokens being ambiguous
Note that there is no impact on the layout of the metadata - the changes here are all ABI-compatible.
The immediate use case is only concretely-constrained existential
types, which could use a much simpler representation, but I've
future-proofed the representation as much as I can; thus, the
requirement signature can have arbitrary parameters and
requirements, and the type can have an arbitrary type as the
sub-expression. The latter is also necessary for existential
metatypes.
The chief implementation complexity here is that we must be able
to agree on the identity of an existential type that might be
produced by substitution. Thus, for example, `any P<T>` when
`T == Int` must resolve to the same type metadata as
`any P<Int>`. To handle this, we identify the "shape" of the
existential type, consisting of those parts which cannot possibly
be the result of substitution, and then abstract the substitutable
"holes" as an application of a generalization signature. That
algorithm will come in a later patch; this patch just represents
it.
Uniquing existential shapes from the requirements would be quite
complex because of all the symbolic mangled names they use.
This is particularly true because it's not reasonable to require
translation units to agree about what portions they mangle vs.
reference symbolically. Instead, we expect the compiler to do
a cryptographic hash of a mangling of the shape, then use that
as the unique key identifying the shape.
This is just the core representation and runtime interface; other
parts of the runtime, such as dynamic casting and demangling
support, will come later.