We generate public metadata lazily which implies it could be emitted into a
different module. If we emit metadata for a public type into a module
other than its "home module" apply "shared" linkage.
For example:
```
public class C: MyClass {
public init(p: some P) {
// ...
}
}
```
Constructors are not called via the vtable (except "required" constructors).
Therefore we can allow generic constructors.
https://github.com/swiftlang/swift/issues/78150
rdar://138576752
Embedded Swift ends up rewriting the linkage of global variables as
part of linking together all of the Swift modules. Doing so for extern
global variables (e.g., ones meant to be implemented in C) breaks the
LLVM module, because they will never have definitions. Only make this
change when the global variable is a definition.
This is needed in Embedded Swift because the `witness_method` convention requires passing the witness table to the callee.
However, the witness table is not necessarily available.
A witness table is only generated if an existential value of a protocol is created.
This is a rare situation because only witness thunks have `witness_method` convention and those thunks are created as "transparent" functions, which means they are always inlined (after de-virtualization of a witness method call).
However, inlining - even of transparent functions - can fail for some reasons.
This change adds a new EmbeddedWitnessCallSpecialization pass:
If a function with `witness_method` convention is directly called, the function is specialized by changing the convention to `method` and the call is replaced by a call to the specialized function:
```
%1 = function_ref @callee : $@convention(witness_method: P) (@guaranteed C) -> ()
%2 = apply %1(%0) : $@convention(witness_method: P) (@guaranteed C) -> ()
...
sil [ossa] @callee : $@convention(witness_method: P) (@guaranteed C) -> () {
...
}
```
->
```
%1 = function_ref @$e6calleeTfr9 : $@convention(method) (@guaranteed C) -> ()
%2 = apply %1(%0) : $@convention(method) (@guaranteed C) -> ()
...
// specialized callee
sil shared [ossa] @$e6calleeTfr9 : $@convention(method) (@guaranteed C) -> () {
...
}
```
Fixes a compiler crash
rdar://165184147
Users frequently run into a missing runtime symbol for Cxx exceptions
(`_swift_exceptionPersonality`) when mixing Embedded Swift and Cxx with
exceptions enabled. This leads to a confusing an hard to debug linker
error. This commit adds an implementation of this function to the
Embedded Swift runtime which simply fatal errors if a cxx exception is
caught in a Swift frame.
Issue: rdar://164423867
Issue: #85490
Code using the outline heap storage path will crash and burn because
support is incomplete. But at least inline storage existential
inhabitants should compile and run.
This eliminates a SIL verification error with `@c` functions, which
provide definitions for foreign entrypoints. We were serializing @c
definitions when we shouldn't be, which would cause problems down the
line if those @c definitions referenced something internal that they
shouldn't.
Implement the @export(implementation) and @export(interface) attributes
to replace @_alwaysEmitIntoClient and @_neverEmitIntoClient. Provide a
warning + Fix-It to start staging out the very-new
@_neverEmitIntoClient. We'll hold off on pushing folks toward
@_alwaysEmitIntoClient for a little longer.
Whenever we have a reference to a foreign function/variable in SIL, use
a mangled name at the SIL level with the C name in the asmname
attribute. The expands the use of asmname to three kinds of cases that
it hadn't been used in yet:
* Declarations imported from C headers/modules
* @_cdecl @implementation of C headers/modules
* @_cdecl functions in general
Some code within the SIL pipeline makes assumptions that the C names of
various runtime functions are reflected at the SIL level. For example,
the linking of Embedded Swift runtime functions is done by-name, and
some of those names refer to C functions (like `swift_retain`) and
others refer to Swift functions that use `@_silgen_name` (like
`swift_getDefaultExecutor`). Extend the serialized module format to
include a table that maps from the asmname of functions/variables over
to their mangled names, so we can look up functions by asmname if we
want. These tables could also be used for checking for declarations
that conflict on their asmname in the future. Right now, we leave it
up to LLVM or the linker to do the checking.
`@_silgen_name` is not affected by these changes, nor should it be:
that hidden feature is specifically meant to affect the name at the
SIL level.
The vast majority of test changes are SIL tests where we had expected
to see the C/C++/Objective-C names in the tests for references to
foreign entities, and now we see Swift mangled names (ending in To).
The SIL declarations themselves will have a corresponding asmname.
Notably, the IRGen tests have *not* changed, because we generally the
same IR as before. It's only the modeling at the SIL lever that has
changed.
Another part of rdar://137014448.