Add a verification pass to ensure that all of the generic signatures in
a module are both minimal and canonical. The approach taken is quite
direct: for every (canonical) generic signature in the module, try
removing a single requirement and forming a new generic signature from
the result. If that new generic signature that provide the removed
requirement, then the original signature was not minimal.
Also canonicalize each resulting signature, to ensure that it meets the
requirements for a canonical signature.
Add a test to ensure that all of the generic signatures in the Swift
module are minimal and canonical, since they are ABI.
This brings the capability from clang to save remarks in an external YAML files.
YAML files can be viewed with tools like the opt-viewer.
Saving the remarks is activated with the new option -save-optimization-record.
Similarly to -emit-tbd, I've only added support for single-compile mode for now.
In this case the default filename is determined by
getOutputFilenameFromPathArgOrAsTopLevel, i.e. unless explicitly specified
with -save-optimization-record-path, the file is placed in the directory of the
main output file as <modulename>.opt.yaml.
The `serialize` method can be called multiple times, but it will perform the actual serialization only the first time.
By means of this API we get the flexibility to serialize the SILModule not only after all the optimizations, but e.g. at any time during optimizations.
Encapsulate uses of the variables in FrontendInputs with intention-describing functions. Move some code that sets these variables into FrontendInputs and FrontendOptions classes.
Create new FrontendInputs class to encapsulate InputFilenames, InputBuffers and PrimaryInput, which were formerly in Frontend.
Includes one change in SwiftEditor.cpp to resolve a merge conflict.
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
This adds an size optimization mode ("Osize") which intends to enable some
optimization but targets mainly reduced code size compared to the regular
optimized mode ("O").
rdar://33075751
This means it can be emitted during an -emit-module frontend job, which is the
most common place it will be used, so reusing work like this is important for
performance.
For now, this has to happen as part of a single frontend invocation, i.e. -wmo
or -force-single-frontend-invocation.
- SILSerializeAll flag is now stored in the SILOptions and passed around as part of it
- Explicit SILSerializeAll/wholeModuleSerialized/makeModuleFragile API parameters are removed in many places
This helps disambiguate files that might otherwise be hard to sort through
if multiple runs output stats together in a single directory. The names
don't have to be perfect, just contain sufficient hints (and be parseable)
to differentiate module, arch, opt and output-type variation in jobs.
It can now:
- not validate (=none)
- validate that all symbols in the IR are also in the TBD (=missing),
- validate the above, and also that all in the TBD are in the IR (=all).
The first and last were switched between with the old boolean flag, the
second is new.
For the multiple-files mode -emit-pch is still invoked in separate frontend invocation but with using a persistent PCH.
Subsequent frontend invocations use the persistent PCH but they don't need to validate it.
For all-files mode (e.g. WMO) the frontend invocation uses a persistent PCH that it also validates.
Replace `NameOfType foo = dyn_cast<NameOfType>(bar)` with DRY version `auto foo = dyn_cast<NameOfType>(bar)`.
The DRY auto version is by far the dominant form already used in the repo, so this PR merely brings the exceptional cases (redundant repetition form) in line with the dominant form (auto form).
See the [C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es11-use-auto-to-avoid-redundant-repetition-of-type-names) for a general discussion on why to use `auto` to avoid redundant repetition of type names.
I had set up the driver to invoke a separate frontend invocation with
the "update code" mode. We sort of did this last release, except we
forked to the swift-update binary instead. This is causing problems with
testing in Xcode.
Instead, let's perform a single compile and add the remap file as an
additional output during normal compiles. The driver, seeing
-update-code, will add -emit-remap-file-path $PATH to the -c frontend
invocation.
rdar://problem/31857580