* Remove RegisterPreservingCC. It was unused.
* Remove DefaultCC from the runtime. The distinction between C_CC and DefaultCC
was unused and inconsistently applied. Separate C_CC and DefaultCC are
still present in the compiler.
* Remove function pointer indirection from runtime functions except those
that are used by Instruments. The remaining Instruments interface is
expected to change later due to function pointer liability.
* Remove swift_rt_ wrappers. Function pointers are an ABI liability that we
don't want, and there are better ways to get nonlazy binding if we need it.
The fully custom wrappers were only needed for RegisterPreservingCC and
for optimizing the Instruments function pointers.
clang is miscompiling some swiftcall functions on armv7s.
Stop using swiftcall in some places until it is fixed.
Reverts c5bf2ec (#13299).
rdar://35973477
This is different from swift_deallocObject in that it applies to objects
at +1 while swift_deallocObject actually only applies to objects whose
state is deiniting (swift_release was called).
On architectures where the calling convention uses the same argument register as
return register this allows the argument register to be live through the calls.
We use LLVM's 'returned' attribute on the parameter to facilitate this.
We used to perform this optimization via an optimization pass. This was ripped
out some time ago around commit 955e4ed652.
By using LLVM's 'returned' attribute on swift_*retain, we get the same
optimization from the LLVM backend.
* IRGen: EmptyBoxType's representation cannot be nil because of a conflict with extra inhabitant assumption in indirect enums
We map nil to the .None case of Optional. Instead use a singleton object.
SR-5148
rdar://32618580
It is safe to test pointer equality of an unowned variable, even if
the unowned variable refers to a dead object. Allowing this operation
without an unnecessary unowned abort enables some kinds of caching
schemes more cheaply than can be done with weak variables.
rdar://32142240
* IRGen: Change c-o-w existential implementation functions
* initialzeBufferWith(Copy|Take)OfBuffer value witness implementation for cow existentials
Implement and use initialzeBufferWith(Copy|Take)OfBuffer value witnesses for
copy-on-write existentials.
Before we used a free standing function but the overhead of doing so was
noticable (~20-30%) on micro benchmarks.
* IRGen: Use common getCopyOutOfLineBoxPointerFunction
* Add a runtime function to conditionally make a box unique
* Fix compilation of HeapObject.cpp on i386
* Fix IRGen test case
* Fix test case for i386
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.
Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.
Use the 'swiftself' attribute on self parameters and for closures contexts.
Use the 'swifterror' parameter for swift error parameters.
Change functions in the runtime that are called as native swift functions to use
the swift calling convention.
rdar://19978563
This makes it a bit easier to diagnose unexpected boxing problems in the debugger, by allowing `po [value _swiftTypeName]` to work, instead of forcing users to know how to call `swift_getTypeName` from lldb themselves.
It has been fairly easy to cause the runtime to crash on multithreaded read-read access to weak references (e.g. https://bugs.swift.org/browse/SR-192). Although weak references are value types, they can get elevated to the heap in multiple ways, such as when captured by a closure or when used as a property in a class object instance. In such cases, race conditions involving weak references could cause the runtime to perform to multiple decrement operations of the unowned reference count for a single increment; this eventually causes early deallocation, leading to use-after-free, modify-after-free and double-free errors.
This commit changes the weak reference operations to use a spinlock rather than assuming thread-exclusive access, when appropriate.
With this change, the crasher discussed in SR-192 no longer encounters crashes due to modify-after-free or double-free errors.
It's to be used by code produced by the ReleaseDevirtualizer.
As the function is only used for non-escaping objects, the deallocating bit is set non-atomically.
- Add RuntimeTarget template This will allow for converting between
metadata structures for native host and remote target architectures.
- Create InProcess and External templates for stored pointers
Add a few more types to abstract pointer access in the runtime
structures but keep native in-process pointer access the same as that
with a plain old pointer type.
There is now a notion of a "stored pointer", which is just the raw value
of the pointer, and the actual pointer type, which is used for loads.
Decoupling these allows us to fork the behavior when looking at metadata
in an external process, but keep things the same for the in-process
case.
There are two basic "runtime targets" that you can use to work with
metadata:
InProcess: Defines the pointer to be trivially a T* and stored as a
uintptr_t. A Metadata * is exactly as it was before, but defined via
AbstractMetadata<InProcess>.
External: A template that requires a target to specify its pointer size.
ExternalPointer: An opaque pointer in another address space that can't
(and shouldn't) be indirected with operator* or operator->. The memory
reader will fetch the data explicitly.
This makes sure that runtime functions use proper calling conventions, get the required visibility, etc.
We annotate the most popular runtime functions in terms of how often they are invoked from Swift code.
- Almost all variants of retain/release functions are annotated to use the new calling convention.
- Some popular non-reference counting functions like swift_getGenericMetadata or swift_dynamicCast are annotated as well.
The set of runtime functions annotated to use the new calling convention should exactly match the definitions in RuntimeFunctions.def!
...and explicitly mark symbols we export, either for use by executables or for runtime-stdlib interaction. Until the stdlib supports resilience we have to allow programs to link to these SPI symbols.