We might allow protocols inside non-generic class/struct/enum
declarations eventually; there's no conceptual difficulty, just
some IRGen and Serialization work that has to happen first.
Also, this fixes a crasher :-)
We "fake" a conformance of UnresolvedType to any protocol.
Instead of returning a concrete conformance, return an
abstract conformance. The concrete conformance had several
problems leading to further crashes:
- The DC was set to a module, not a type declaration context,
since there is not type declaration context here.
- The conformance was marked complete even though it was missing
inherited conformances.
Changes:
* Terminate all namespaces with the correct closing comment.
* Make sure argument names in comments match the corresponding parameter name.
* Remove redundant get() calls on smart pointers.
* Prefer using "override" or "final" instead of "virtual". Remove "virtual" where appropriate.
The protocol conformance checker tries to delay the emission of
diagnostics related to the failure of a type to conform to a protocol
until the source file that contains the conformance is encountered, to
provide redundant diagnostics. However, if a file produced only such
delayed diagnostics, such that all diagnostics were suppressed,
invalid ASTs could slip through to later stages in the pipeline where
they would cause verification errors and crashes. This happens
generally with whole-module-optimization builds, where we are re-using
an ASTContext when typing multiple source files.
This is a narrow-ish fix to stop dropping diagnostics from one source
file to the next in whole-module-optimization builds. Part of
rdar://problem/29689007.
- TypeAliasDecl::getAliasType() is gone. Now, getDeclaredInterfaceType()
always returns the NameAliasType.
- NameAliasTypes now always desugar to the underlying type as an
interface type.
- The NameAliasType of a generic type alias no longer desugars to an
UnboundGenericType; call TypeAliasDecl::getUnboundGenericType() if you
want that.
- The "lazy mapTypeOutOfContext()" hack for deserialized TypeAliasDecls
is gone.
- The process of constructing a synthesized TypeAliasDecl is much simpler
now; instead of calling computeType(), setInterfaceType() and then
setting the recursive properties in the right order, just call
setUnderlyingType(), passing it either an interface type or a
contextual type.
In particular, many places weren't setting the recursive properties,
such as the ClangImporter and deserialization. This meant that queries
such as hasArchetype() or hasTypeParameter() would return incorrect
results on NameAliasTypes, which caused various subtle problems.
- Finally, add some more tests for generic typealiases, most of which
fail because they're still pretty broken.
When deserializing the generic environment for a generic type, only
immediately deserialize the generic signature. The generic environment
will be deserialized later, when it's needed.
When we deserialize a function that has a generic environment, set the
generic signature and a key to allow lazy creation of the generic
environment. Because most clients won't need the generic environment,
this lets us avoid creating generic environments.
Save two pointers of storage in IterableDeclContext (a base class of
nominal type and extension declarations) by storing the lazy member
loader + context data in an ASTContext side table. It also makes it
easier to add more lazy context information later on.
While not strictly needed for type checking, it's extremely useful for
debugging and verification to know what context a particular generic
environment is associated with. This information was in a kludgy side
table, but it's worth a pointer in GenericEnvironment to always have
it available.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Store the archetype-to-interface-type mapping (which is used to map
*out* of a generic environment) is a tail-allocated array of
(archetype, generic type parameter) pairs. This array is built up
lazily, as we compute the context types for generic parameters.
Searching in this array is linear while it is being constructed. Once
it is complete, it is sorted so that future searches are logarithmic.
Aside from the space savings of not having a DenseMap lying around,
this means we no longer need to register a destructor of a
GenericEnvironment with the ASTContext, which saves us tear-down
time.
Superclass constraints are uncommon, so put them into trailing-object
storage. Similarly, there's no reason to pay for the pointer + size of
the array of protocols to which the archetype conforms when we can use
trailing objects and existing padding bits.
Note that the nested types are *not* tail-allocated because they will
(eventually) be lazily allocated.
Rather than storing a heavyweight DenseMap for the mapping from
interface types (which are always generic type parameters) to their
corresponding context types, tail-allocate the array of context types
as an array parallel to the generic type parameters array. Use
GenericParamKey's lookup facilities and the new
type-substitution-function-based version of Type::subst() to handle
queries efficiently.
This eliminates the really gross registration of archetype builders
within the ASTContext, and is another little step toward lazily
constructing archetypes.
Rather than directly using the ArchetypeBuilder associated with a
canonical generic signature, use a canonical GenericEnvironment
associated with that canonical generic signature. This has a few
benefits:
* It's cleaner to not have IRGen working with archetype builders;
GenericEnvironment is the right abstraction for mapping between
dependent types and archetypes for a specific context.
* It helps us separate the archetype builder from a *specific*
set of archetypes. This is an ongoing refactor that is intended to
allow us to re-use archetype builders across different generic
environments.
As part of this, ArchetypeBuilder::substDependentType() has gone away
in favor of GenericEnvironment::mapTypeIntoContext().
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.
This function had a weird, pre-ProtocolConformanceRef interface that
returned true when the type conformed to the protocol, then had a
separate indirect return value for the concrete conformance (if there
is one). Refactor this API, and the similar
TypeChecker::containsProtocol(), to produce an optional
ProtocolConformanceRef, which is far more idiomatic and easier to
use. Push ProtocolConformanceRef into a few more places. Should be NFC
An environment is always associated with a location with a signature, so
having them separate is pointless duplication. This patch also updates
the serialization to round-trip the signature data.
The ASTContext had a wacky "get member type" callback that actually
called back into the constraint system (!) to build member types. This
callback was obsoleted by the change that started representing nested
types as DependentMemberTypes.
In the constraint solver, we've traditionally modeled nested type via
a "type member" constraint of the form
$T1 = $T0.NameOfTypeMember
and treated $T1 as a type variable. While the solver did generally try
to avoid attempting bindings for $T1 (it would wait until $T0 was
bound, which solves the constraint), on occasion we would get weird
behavior because the solver did try to bind the type
variable.
With this commit, model nested types via DependentMemberType, the same
way we handle (e.g.) the nested type of a generic type parameter. This
solution maintains more information (e.g., we know specifically which
associated type we're referring to), fits in better with the type
system (we know how to deal with dependent members throughout the type
checker, AST, and so on), and is easier to reason able.
This change is a performance optimization for the type checker for a
few reasons. First, it reduces the number of type variables we need to
deal with significantly (we create half as many type variables while
type checking the standard library), and the solver scales poorly with
the number of type variables because it visits all of the
as-yet-unbound type variables at each solving step. Second, it
eliminates a number of redundant by-name lookups in cases where we
already know which associated type we want.
Overall, this change provides a 25% speedup when type-checking the
standard library.
Various parts of the type checker (related to enum == synthesis) rely
on == for Ints being a module-scope function, which is silly. Remove
the restriction. Fixes rdar://problem/29029561.
This gives us a concept we can eventually use to cache the lowered physical layout of fragile structs and classes, and more immediately, concretize the layout of closure boxes in a way that lets us represent the capture of generic environments and multiple captured values without compromising the "nominal" nature of box layouts. To start exercising the basic implementation, change the representation of SILBoxType to be in terms of a SILLayout, though avoid any immediate functionality change by preserving the single-boxed-type interface for now.
Sugared GenericTypeParamTypes point to GenericTypeParamDecls,
allowing the name of the parameter as written by the user to be
recovered. Canonical GenericTypeParamTypes on the other hand
only store a depth and index, without referencing the original
declaration.
When printing SIL, we wish to output the original generic parameter
names, even though SIL only uses canonical types. Previously,
we used to accomplish this by mapping the generic parameter to an
archetype and printing the name of the archetype. This was not
adequate if multiple generic parameters mapped to the same
archetype, or if a generic parameter was mapped to a concrete type.
The new approach preserves the original sugared types in the
GenericEnvironment, adding a new GenericEnvironment::getSugaredType()
method.
There are also some other assorted simplifications made possible
by this.
Unfortunately this makes GenericEnvironments use a bit more memory,
however I have more improvements coming that will offset the gains,
in addition to making substitution lists smaller also.
Similar to “isTypeParameter,” this new entry point determines whether the type is a type variable or a nested type of a type thereof. The latter case isn’t actually formed yet, so this is NFC staging the trivial bits of this change.
In most places where we were checking "is<ErrorType>()", we now mean
"any error occurred". The few exceptions are in associated type
inference, code completion, and expression diagnostics, where we might
still work with partial errors.