previously I was allowing these because I thought there was
some representational difference if the enum is raw. it
turns out that a raw enum is only useful if you synthesize
conformance to RawRepresentable. since I disabled that
synthesis it's kind of silly to still allow the raw type
to be written at all.
rdar://110539937
SILGen introduces a copy of the capture, because the semantics of escaping partial_apply's
requires the closure to take ownership of the parameters. We don't know when a closure is
strictly nonescaping or its final lifetime until ClosureLifetimeFixup runs, but that replaces
the consume of the copy with a borrow of the copy normally, hoping later passes fix it up.
We can't wait that long for move-only types, which can't be copied, so try to remove the
copy up front when the copy lives long enough and has no interfering uses other than the
partial_apply. rdar://110137169
The `hop_to_executor` instruction is a synchronization point and any kind of other code might run at this point,
which potentially can release objects.
Fixes a miscompile
rdar://110924258
Look through `upcast` and `init_existential_ref` instructions and replace the operand of this cast instruction with the original value.
For example:
```
%2 = upcast %1 : $Derived to $Base
%3 = init_existential_ref %2 : $Base : $Base, $AnyObject
checked_cast_br %3 : $AnyObject to Derived, bb1, bb2
```
This makes it more likely that the cast can be constant folded because the source operand's type is more accurate.
In the example above, the cast reduces to
```
checked_cast_br %1 : $Derived to Derived, bb1, bb2
```
which can be trivially folded to always-succeeds.
Found while looking at `_SwiftDeferredNSDictionary.bridgeValues()`
This code used to crash the compiler:
var s = std.string("hi")
s.append("foo")
`append` in this case resolves to a templated C++ method that accepts `std::string_view`, while we tried passing a Swift String to it as a parameter.
rdar://107018724
The address checker records uses in its livenessUses map. Previously,
that map mapped from an instruction to a range of fields of the type.
But an instruction can use multiple discontiguous fields of a single
value. Here, such instructions are properly recorded by fixing the map
to store a bit vector for each instruction.
rdar://110676577
FieldSensitivePrunedLiveness is used as a vectorization of
PrunedLiveness. An instance of FSPL with N elements needs to be able to
represent the same states as N instances of PL.
Previously, it failed to do that in two significant ways:
(1) It attempted to save space for which elements were live by using
a range. This failed to account for instructions which are users of
non-contiguous fields of an aggregate.
apply(
@owned (struct_element_addr %s, #S.f1),
@owned (struct_element_addr %s, #S.f3)
)
(2) It used a single bit to represent whether the instruction was
consuming. This failed to account for instructions which consumed
some fields and borrowed others.
apply(
@owned (struct_element_addr %s, #S.f1),
@guaranteed (struct_element_addr %s, #S.f2)
)
The fix for (1) is to use a bit vector to represent which elements
are used by the instruction. The fix for (2) is to use a second bit
vector to represent which elements are _consumed_ by the instruction.
Adapted the move-checker to use the new representation.
rdar://110909290
Iterating all options and potential file system access is not great for
every plugin lookup request. Instead, lazily create a single lookup table
keyed by module name.
this was staged in as a warning initially but it was intended to be
an error if it is not written so that we can move to a world where
these pattern matches are done as a borrowing operation instead.
rdar://110908714
Its storage vector is intended to be of some type like
`std::vector<std::pair<Key, Optional<Value>>>`, i.e., some collection of
pairs whose `second` is an `Optional<Value>`. So when constructing a
default instance of that pair, just construct an Optional in the None
case.
ConditionalClauseInitializerScope often create redundant scopes, however, they
are needed to correctly represent the scopes in an expression such as:
if case .something(let foo), let foo = foo.
This patch changes SILGen to lower them 1:1 from ASTScopes.
rdar://110841130
- Renames ExperimentalPlatformCCallingConvention to
PlatformCCallingConvention.
- Removes non-arm calling convention support as this feature is working
around a clang bug for some arm triples which we hope to see resolved.
- Removes misleading MetaVarName from platform-c-calling-convention
argument.
- Replaces other uses of LLVM::CallingConv::C with
IGM.getOptions().PlatformCCallingConvention().
Adds a new swift-frontend flag to allow users to choose which calling
convention is used to make c function calls. This hidden flag is called
`-experimental-platform-c-calling-convention`.
This behavior is needed to workaround rdar://109431863 (Swift-frontend
produces trapping llvm ir for non-trapping sil). The root cause of this
issue is that IRGen always emits c function calls with llvm's default C
calling convention. However clang may select a different (incompatible)
calling convention for the function, eventually resulting--via
InstCombine and SimplifyCFG--in a trap instead of the function call.
This failure mode is most readily seen with the triple
`armv7em-apple-none-macho` when attempting to call functions taking
struct arguments. Example unoptimized ir below:
```llvm-ir
call void @bar([4 x i32] %17, i32 2), !dbg !109
...
define internal arm_aapcs_vfpcc void @bar(
[4 x i32] %bar.coerce, i32 noundef %x)
```
In the future it would be better to use the clang importer or some other
tool to determine the calling convention for each function instead of
setting the calling convention frontend invocation wide.
Note: I don't know for sure whether or not clang should be explicitly
annotating these functions with a calling convention instead of
aliasing C to mean ARM_AAPCS_VFP for this particular combination of
`-target`, `-mfloat-abi`, and `-mcpu`.
Record up to two errors emitted when we fail to
load a module for interface generation, and include
these errors in the message we pass back to the
editor. This should help us better pin down the
reason why interface generation failed.
rdar://109511099