Tracking this as a single bit is actually largely uninteresting
to the runtime. To handle priority escalation properly, we really
need to track this at a finer grain of detail: recording that the
task is running on a specific thread, enqueued on a specific actor,
or so on. But starting by tracking a single bit is important for
two reasons:
- First, it's more realistic about the performance overheads of
tasks: we're going to be doing this tracking eventually, and
the cost of that tracking will be dominated by the atomic
access, so doing that access now sets the baseline about right.
- Second, it ensures that we've actually got runtime involvement
in all the right places to do this tracking.
A propos of the latter: there was no runtime involvement with
awaiting a continuation, which is a point at which the task
potentially transitions from running to suspended. We must do
the tracking as part of this transition, rather than recognizing
in the run-loops that a task is still active and treating it as
having suspended, because the latter point potentially races with
the resumption of the task. To do this, I've had to introduce
a runtime function, swift_continuation_await, to do this awaiting
rather than inlining the atomic operation on the continuation.
As part of doing this work, I've also fixed a bug where we failed
to load-acquire in swift_task_escalate before walking the task
status records to invoke escalation actions.
I've also fixed several places where the handling of task statuses
may have accidentally allowed the task to revert to uncancelled.
This commit changes JobFlags storage to be 32bits, but leaves the runtime
API expressed in terms of size_t. This allows us to pack an Id in the
32bits we freed up.
The offset of this Id in the AsyncTask is an ABI constant. This way
introspection tools can extract the currently running task identifier
without any need for special APIs.
The immediate desire is to minimize the set of ABI dependencies
on the layout of an ExecutorRef. In addition to that, however,
I wanted to generally reduce the code size impact of an unsafe
continuation since it now requires accessing thread-local state,
and I wanted resumption to not have to create unnecessary type
metadata for the value type just to do the initialization.
Therefore, I've introduced a swift_continuation_init function
which handles the default initialization of a continuation
and returns a reference to the current task. I've also moved
the initialization of the normal continuation result into the
caller (out of the runtime), and I've moved the resumption-side
cmpxchg into the runtime (and prior to the task being enqueued).
Most of the async runtime functions have been changed to not
expect the task and executor to be passed in. When knowing the
task and executor is necessary, there are runtime functions
available to recover them.
The biggest change I had to make to a runtime function signature
was to swift_task_switch, which has been altered to expect to be
passed the context and resumption function instead of requiring
the caller to park the task. This has the pleasant consequence
of allowing the implementation to very quickly turn around when
it recognizes that the current executor is satisfactory. It does
mean that on arm64e we have to sign the continuation function
pointer as an argument and then potentially resign it when
assigning into the task's resume slot.
rdar://70546948
For this, store those 3 values on the stack at function entry and update them with the return values of coro_suspend_async intrinsic calls.
This fixes a correctness issue, because the executor may be different after a resume.
It also is more efficient, because this means that the 3 values don't have to preserved in the context over a suspension point.
An AsyncFunctionPointer, defined in Task.h, is a struct consisting of
two i32s: (1) the relative address of the async function and (2) the
size of the async context to be allocated when calling that function.
Here, such structs are emitted for every async SILFunction that is
emitted.
The implementation was done quite a while ago.
Now, that we have support in lldb (https://github.com/apple/llvm-project/pull/773), we can enable it by default in the compiler.
LLDB now shows the runtime failure reason, for example:
* thread #1, queue = 'com.apple.main-thread', stop reason = Swift runtime failure: arithmetic overflow
frame #1: 0x0000000100000f0d a.out`testit(a=127) at trap_message.swift:4
1
2 @inline(never)
3 func testit(_ a: Int8) -> Int8 {
-> 4 return a + 1
5 }
6
For details, see https://github.com/apple/swift/pull/25978
rdar://problem/51278690
To display a failure message in the debugger, create a function in the debug info which has the name of the failure message.
The debug location of the trap/cond_fail is then wrapped into this function and the function is declared as "inlined".
In case the debugger stops at the trap instruction, it displays the inline function, which looks like the failure message.
For example:
* thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)
frame #0: 0x0000000100000cbf a.out`testit3(_:) [inlined] Unexpectedly found nil while unwrapping an Optional value at test.swift:14:11 [opt]
11
12 @inline(never)
13 func testit(_ a: Int?) -> Int {
-> 14 return a!
15 }
16
This change is currently not enabled by default, but can be enabled with the option "-Xllvm -enable-trap-debug-info".
Enabling this feature needs some changes in lldb. When the lldb part is done, this option can be removed and the feature enabled by default.
To display a failure message in the debugger, create a function in the debug info which has the name of the failure message.
The debug location of the trap/cond_fail is then wrapped into this function and the function is declared as "inlined".
In case the debugger stops at the trap instruction, it displays the inline function, which looks like the failure message.
For example:
* thread #1, queue = 'com.apple.main-thread', stop reason = EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)
frame #0: 0x0000000100000cbf a.out`testit3(_:) [inlined] Unexpectedly found nil while unwrapping an Optional value at test.swift:14:11 [opt]
11
12 @inline(never)
13 func testit(_ a: Int?) -> Int {
-> 14 return a!
15 }
16
This change is currently not enabled by default, but can be enabled with the option "-Xllvm -enable-trap-debug-info".
Enabling this feature needs some changes in lldb. When the lldb part is done, this option can be removed and the feature enabled by default.
PR #14729 made more calls to llvm.trap() non-mergeable. This follow-up
adds asserts to IRBuilder which make it harder to accidentally introduce
mergeable calls to llvm.trap() in the future.
The newly-added assertions exposed an issue in GenBuiltin while
compiling parts of the stdlib. This PR fixes the issue.
Suggested by Adrian Prantl!
rdar://32772768
Factor out and reuse logic in the lowering of CondFailInst to emit
non-mergeable traps, everywhere we emit traps. This should address a
debugging quality issue with ambiguous ud2 instructions.
rdar://32772768
This commit is mostly refactoring.
*) Introduce a new OptimizationMode enum and use that in SILOptions and IRGenOptions
*) Allow the optimization mode also be specified for specific SILFunctions. This is not used in this commit yet and thus still a NFC.
Also, fixes a minor bug: we didn’t run mandatory IRGen passes for functions with @_semantics("optimize.sil.never")
This commit contains:
-) adding the new instructions + infrastructure, like parsing, printing, etc.
-) support in IRGen to generate global object-variables (i.e. "heap" objects) which are statically initialized in the data section.
-) IRGen for global_value which lazily initializes the object header and returns a reference to the object.
For details see the documentation of the new instructions in SIL.rst.
To make this stick, I've disallowed direct use of that overload of
CreateCall. I've left the Constant overloads available, but eventually
we might want to consider fixing those, too, just to get all of this
code out of the business of manually remembering to pass around
attributes and calling conventions.
The test changes reflect the fact that we weren't really setting
attributes consistently at all, in this case on value witnesses.