In canEscapeToUsePoint only check the content node if it's a reference (see comment why this is needed).
For all other node types, especially addresses, handle defer edges by propagating use-point infomation backward in the graph.
This makes escape analysis more precise with address types, e.g. don't consider an inout address to escape to an apply if just the loaded value is passed to an apply argument.
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
This provides a singular instruction for convert an unmanaged value to a ref,
then strong_retain it. I expanded the definition of UNCHECKED_REF_STORAGE to
include these copy like instructions. This instruction is valid in all SIL.
The reason why I am adding this instruction is that currently when we emit an
access to an unowned (unsafe) ivar, we use an unmanaged_to_ref and a strong
retain. This can look to the optimizer like a strong retain that can potentially
be optimized. By combining the two together into a new instruction, we can avoid
this potential problem since the pattern matching will break.
Describe the algorithm in the file-level doc comment. The basic
algorithm in the referenced paper is similar, but the most
interesting/important information is how it is adapted to SIL.
With the advent of dynamic_function_ref the actual callee of such a ref
my vary. Optimizations should not assume to know the content of a
function referenced by dynamic_function_ref. Introduce
getReferencedFunctionOrNull which will return null for such function
refs. And getInitialReferencedFunction to return the referenced
function.
Use as appropriate.
rdar://50959798
This is a large patch; I couldn't split it up further while still
keeping things working. There are four things being changed at
once here:
- Places that call SILType::isAddressOnly()/isLoadable() now call
the SILFunction overload and not the SILModule one.
- SILFunction's overloads of getTypeLowering() and getLoweredType()
now pass the function's resilience expansion down, instead of
hardcoding ResilienceExpansion::Minimal.
- Various other places with '// FIXME: Expansion' now use a better
resilience expansion.
- A few tests were updated to reflect SILGen's improved code
generation, and some new tests are added to cover more code paths
that previously were uncovered and only manifested themselves as
standard library build failures while I was working on this change.
Just treat begin_apply conservatively.
It's probably not worth adding much complexity for begin_apply to the analysis as co-routines are often inlined anyway.
Fixes a miscompile.
https://bugs.swift.org/browse/SR-10444
rdar://problem/49755264
The client of this interface naturally expects to get back the
incoming phi value. Ignoring dominance and SIL ownership, the incoming
phi value and the block argument should be substitutable.
This method was actually returning the incoming operand for
checked_cast and switch_enum terminators, which is deeply misleading
and has been the source of bugs.
If the client wants to peek though casts, and enums, it should do so
explicitly. getSingleTerminatorOperand[s]() will do just that.
Generally in the SIL/SILOptimizer libraries we have been putting kinds in the
swift namespace, not a nested scope in a type in swift (see ValueKind as an
example of this).
The major important thing here is that by using copy_unowned_value we can
guarantee that the non-ownership SIL ARC optimizer will treat the release
associated with the strong_retain_unowned as on a distinc rc-identity from its
argument. As an example of this problem consider the following SILGen like
output:
----
%1 = copy_value %0 : $Builtin.NativeObject
%2 = ref_to_unowned %1
%3 = copy_unowned_value %2
destroy_value %1
...
destroy_value %3
----
In this case, we are converting a strong reference to an unowned value and then
lifetime extending the value past the original value. After eliminating
ownership this lowers to:
----
strong_retain %0 : $Builtin.NativeObject
%1 = ref_to_unowned %0
strong_retain_unowned %1
strong_release %0
...
strong_release %0
----
From an RC identity perspective, we have now blurred the lines in between %3 and
%1 in the previous example. This can then result in the following miscompile:
----
%1 = ref_to_unowned %0
strong_retain_unowned %1
...
strong_release %0
----
In this case, it is possible that we created a lifetime gap that will then cause
strong_retain_unowned to assert. By not lowering copy_unowned_value throughout
the SIL pipeline, we instead get this after lowering:
----
strong_retain %0 : $Builtin.NativeObject
%1 = ref_to_unowned %0
%2 = copy_unowned_value %1
strong_release %0
...
strong_release %2
----
And we do not miscompile since we preserved the high level rc identity
pairing.
There shouldn't be any performance impact since we do not really optimize
strong_retain_unowned at the SIL level. I went through all of the places that
strong_retain_unowned was referenced and added appropriate handling for
copy_unowned_value.
rdar://41328987
**NOTE** I am going to remove strong_retain_unowned in a forthcoming commit. I
just want something more minimal for cherry-picking purposes.
The EscapeAnalysis:canEscapeTo function was actually broken, because it did not detect all escapes of a reference/pointer.
I completely replaced the implementation with the correct one (canObjectOrContentEscapeTo) and removed the now obsolete canObjectOrContentEscapeTo.
Fixes a miscompile.
rdar://problem/39161309
* Reduce array abstraction on apple platforms dealing with literals
Part of the ongoing quest to reduce swift array literal abstraction
penalties: make the SIL optimizer able to eliminate bridging overhead
when dealing with array literals.
Introduce a new classify_bridge_object SIL instruction to handle the
logic of extracting platform specific bits from a Builtin.BridgeObject
value that indicate whether it contains a ObjC tagged pointer object,
or a normal ObjC object. This allows the SIL optimizer to eliminate
these, which allows constant folding a ton of code. On the example
added to test/SILOptimizer/static_arrays.swift, this results in 4x
less SIL code, and also leads to a lot more commonality between linux
and apple platform codegen when passing an array literal.
This also introduces a couple of SIL combines for patterns that occur
in the array literal passing case.
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Use 'hasAssociatedValues' instead of computing and discarding the
interface type of an enum element decl. This change has specifically not
been made in conditions that use the presence or absence of the
interface type, only conditions that depend on the presence or absence
of associated values in the enum element decl.
This caused redundant load elimination to remove a load although the value is overwritten in a called function.
Most likely this could only occur if the load address is a block argument.
fixes SR-4393
There are now separate functions for function addition and deletion instead of InvalidationKind::Function.
Also, there is a new function for witness/vtable invalidations.
rdar://problem/29311657
Storing this separately is unnecessary since we already
serialize the enum element's interface type. Also, this
eliminates one of the few remaining cases where we serialize
archetypes during AST serialization.
Separate formal lowered types from SIL types.
The SIL type of an argument will depend on the SIL module's conventions.
The module conventions are determined by the SIL stage and LangOpts.
Almost NFC, but specialized manglings are broken incidentally as a result of
fixes to the way passes handle book-keeping of aruments. The mangler is fixed in
the subsequent commit.
Otherwise, NFC is intended, but quite possible do to rewriting the logic in many
places.
Not sure why but this was another "toxic utility method".
Most of the usages fell into one of three categories:
- The base value was always non-null, so we could just call
getCanonicalType() instead, making intent more explicit
- The result was being compared for equality, so we could
skip canonicalization and call isEqual() instead, removing
some boilerplate
- Utterly insane code that made no sense
There were only a couple of legitimate uses, and even there
open-coding the conditional null check made the code clearer.
Also while I'm at it, make the SIL open archetypes tracker
more typesafe by passing around ArchetypeType * instead of
Type and CanType.
For a long time, we have:
1. Created methods on SILArgument that only work on either function arguments or
block arguments.
2. Created code paths in the compiler that only allow for "function"
SILArguments or "block" SILArguments.
This commit refactors SILArgument into two subclasses, SILPHIArgument and
SILFunctionArgument, separates the function and block APIs onto the subclasses
(leaving the common APIs on SILArgument). It also goes through and changes all
places in the compiler that conditionalize on one of the forms of SILArgument to
just use the relevant subclass. This is made easier by the relevant APIs not
being on SILArgument anymore. If you take a quick look through you will see that
the API now expresses a lot more of its intention.
The reason why I am performing this refactoring now is that SILFunctionArguments
have a ValueOwnershipKind defined by the given function's signature. On the
other hand, SILBlockArguments have a stored ValueOwnershipKind. Rather than
store ValueOwnershipKind in both instances and in the function case have a dead
variable, I decided to just bite the bullet and fix this.
rdar://29671437