Avoid claiming un-labeled defaulted parameters
by out-of-order un-labeled arguments or parts
of variadic argument sequence, because that might
be incorrect.
The following example is supposed to type-check
correctly but without these changes produces
`missing argument for parameter #4 in call`
error, because `3` will be claimed as '_ b:':
```swift
func foo(_ a: Int, _ b: Int = 0, c: Int = 0, _ d: Int) {}
foo(1, c: 2, 3)
```
Resolves: rdar://problem/43525641
This makes it easier to grep for and eventually remove the
remaining usages.
It also allows you to write FunctionType::get({}, ...) to call the
ArrayRef overload empty parameter list, instead of picking the Type
overload and calling it with an empty Type() value.
While I"m at it, in a few places instead of renaming just clean up
usages where it was completely mechanical to do so.
- getAsDeclOrDeclExtensionContext -> getAsDecl
This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.
- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)
These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point. The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.
- getAsProtocolExtensionContext -> getExtendedProtocolDecl
Like the above, this didn't return the ExtensionDecl; it returned its
extended type.
This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.
`Fix` life-time is pretty limited as it is, and we'd have
to distinguish between standalone fixes and ones attached
to constraints, which is not worth the trouble.
Resolves: rdar://problem/43285774
This either became dead shortly after the removal of Swift 3
compatibility mode from the constraint solver, or even earlier.
Note that the code completion test change is actually correct
because (Any) -> () is not convertible to () -> () in the
language.
If fixes are allowed let solver record missing protocol conformance
requirements and assume that `conformsTo` constraint is successfully
solved, this helps to diagnose such errors without involving
heavy-weight expression based diagnostics.
Resolves: rdar://problem/40537858
While inferring avoid associating type variables with closure
parameters, use cache instead and only set types when everything
is properly type-checked, this avoids multiple problems one of
them - leaking type variables outside of constraint system they
belong to.
Most of the use-cases of `gatherConstraints` require filtering
at least based on the constraint kind that caller is interested in,
so instead of returning unrelated results and asking caller to
filter separately, let's add that functionality directly to
`gatherConstraints`.
Since it's possible to find the same constraint through two different
but equivalent type variables, let's use a set to store constraints
instead of a vector to avoid processing the same constraint multiple
times.
This builds on initial commit which added `RelabelArguments` fix
to the solver that only supported `missingLabels` at that moment,
but now it supports all three posibilities - missing/extraneous and
incorrect labels.
Let the solver disregard missing argument labels and record correct
ones, so such problem could be diagnosed later on iff there were no
other more serious failures.
* Improve label mismatch callback:
- Split "missing label" callback into 3 - missing, extraneous, incorrect (with typo(s));
- Allow label callbacks to indicate if it's a fatal error or not;
* Improve matching of the variadic parameters;
* Improve matching of the parameters with defaults;
* Try to look for an argument with matching label before fallback to
forced claming (if allowed).
...unless the argument is an `Any?`, in which case we prefer `f(_: Any?)`.
This change also results in our selecting f<T>(_: T) over f(_:
Any). Coercing with 'as Any' makes it possible to explicitly select
the Any overload. Previously there was no way to select the generic
overload.
Treat non-optional generic parameters as being more specialized than
optional generic parameters, and penalize any solutions that involve
generic arguments that are themselves Optional.
By doing these things, we can remove the special-cased code for the
two overloads of '??' in the stdlib, instead treating the (T?, T)
overload as better than the (T?, T?) overload except where a user
actually passes an optionally-typed value as the second parameter.
Fixes: rdar://problem/19748710
Introduce a new fix kind into the constraint solver to cover unwrapping the base
of a member access so we can refer to the a member of the unwrapped base.
Wire this fix kind to the just-added diagnostic that suggests either the
chaining ‘?’ or the force-unwrap ‘!’ via separate, descriptive Fix-Its.
Example:
error: value of optional type 'X?' must be unwrapped to refer to member 'f' of wrapped base type 'X'
let _: Int = x.f()
^
note: chain the optional using '?' to access member 'f' only for non-'nil' base values
let _: Int = x.f()
^
?
note: force-unwrap using '!' to abort execution if the optional value contains 'nil'
let _: Int = x.f()
^
!
Before this, we would sometimes get a Fix-It for just ‘?’ and sometimes get a Fix-It for the
coalescing ‘??’, neither of which is likely to be right.
More work on rdar://problem/42081852.
More groundwork for protocols with superclass constraints.
In several places we need to distinguish between existential
types that have a superclass term (MyClass & Proto) and
existential types containing a protocol with a superclass
constraint.
This is similar to how I can write 'AnyObject & Proto', or
write 'Proto1 & Proto2' where Proto1 has an ': AnyObject'
in its inheritance clause.
Note that some of the usages will be revisited later as
I do more refactoring and testing. This is just a first pass.