This hooks up call argument position completion to the typeCheckForCodeCompletion API to generate completions from all the solutions the constraint solver produces (even those requiring fixes), rather than relying on a single solution being applied to the AST (if any).
Co-authored-by: Nathan Hawes <nathan.john.hawes@gmail.com>
This is going to be used by multi-statement closure inference
because patterns could be declarated and referenced in the body
via the associated declaration.
Applies swift-experimental-string-processing#68 in regex literal type inference. Regex literals with captures will have type `Regex<Tuple{n}<Substring, {Captures...}>>`. This is a temporary thing that allows us to define generic constraints on captures. We will switch back to native tuples once we have variadic generics.
Opaque opaque types and record them within the "opened types" of the
constraint system, then use that information to compute the set of
substitutions needed for the opaque type declaration using the normal
mechanism of the constraint solver. Record these substitutions within
the underlying-to-opaque conversion.
Use the recorded substitutions in the underlying-to-opaque conversion
to set the underlying substitutions for the opaque type declaration
itself, rather than reconstructing the substitutions in an ad hoc manner
that does not account for structural opaque result types.
When parsing a regular expression literal, accept a serialized capture structure from the regex parser. During type checking, decode it and form Swift types.
Examples:
```swift
'/(.)(.)/' // ==> `Regex<(Substring, Substring)>`
'/(?<label>.)(.)/' // ==> `Regex<(label: Substring, Substring)`
'/((.))*((.)?)/' //==> `Regex<([Substring], [Substring], Substring, Substring?)>`
```
Also:
- Fix a bug where a regex literal parsing error is not returning an error parser result.
Note:
- This needs to land after apple/swift-experimental-string-processing#92 and after `dev/4` tag has been created.
- See apple/swift-experimental-string-processing#92 for regex parser changes and the capture structure encoding.
- The `RegexLiteralParsingFn` `CaptureStructureOut` pointer type change from `char *` to `void *` will not break builds due to implicit pointer conversion (SE-0324) and unchanged ABI.
Resolves rdar://83253511.
This reverts commit a67a0436f7, reversing
changes made to 9965df76d0.
This commit or the earlier commit this commit is based on (#40531) broke the
incremental bot.
- Checkout apple/swift-experimental-string-processing using a tag.
- Build `_MatchingEngine` as part of libswift (`ExperimentalRegex`) using sources from the package.
- Parse regex literals using the parser from `_MatchingEngine`.
- Build both `_MatchingEngine` and `_StringProcessing` as part of core libs using sources from the package.
- Use `Regex<DynamicCaptures>` as the default regex type until we finalize apple/swift-experimental-string-processing#68.
The algorithm is detailed below:
Suppose we encounter a type T<..., U, V..., W, ...> for V... the _sole_ variadic generic parameter.
When we encounter an argument list <A, B, C, D, E, F, ...> to T, we must work in three steps
- Bind all generic parameters up to U in parallel with the argument list until we encounter V...
- Measure the tail of parameters after V... and call it `t`. Assuming `m` type variables hav been bound already, we must bind `n - t - m` type arguments to V...
- Finally, bind the remaining `t` arguments.
This procedure is often called "Saturation" in the literature. Variadic generics have a special saturation property where unlike normal generic parameters it is possible to bind zero arguments to them. In such a case, the result is an empty pack type, which is semantically well-formed.
Pack expressions take a series of argument values and bundle them together as a pack - much like how a tuple expression bundles argument expressions into a tuple.
Pack reification represents the operation that converts packs to tuples/scalar types in the AST. This is important since we want pack types in return positions to resolve to tuples contextually.
- Frontend: Implicitly import `_StringProcessing` when frontend flag `-enable-experimental-string-processing` is set.
- Type checker: Set a regex literal expression's type as `_StringProcessing.Regex<(Substring, DynamicCaptures)>`. `(Substring, DynamicCaptures)` is a temporary `Match` type that will help get us to an end-to-end working system. This will be replaced by actual type inference based a regex's pattern in a follow-up patch (soon).
- SILGen: Lower a regex literal expression to a call to `_StringProcessing.Regex.init(_regexString:)`.
- String processing runtime: Add `Regex`, `DynamicCaptures` (matching actual APIs in apple/swift-experimental-string-processing), and `Regex(_regexString:)`.
Upcoming:
- Build `_MatchingEngine` and `_StringProcessing` modules with sources from apple/swift-experimental-string-processing.
- Replace `DynamicCaptures` with inferred capture types.
With `-enable-experimental-string-processing`,
start lexing `'` delimiters as regex literals (this
is just a placeholder delimiter for now). The
contents of which gets passed to the libswift
library, which can return an error string to be
emitted, or null for success.
The libswift side isn't yet hooked up to the Swift
regex parser, so for now just emit a dummy
diagnostic for regexes starting with quantifiers.
If successful, build an AST node which will be
emitted as an implicit call to an
`init(_regexString:)` initializer of an in-scope
`Regex` decl (which will eventually be a known
stdlib decl).
This cleans up 90 instances of this warning and reduces the build spew
when building on Linux. This helps identify actual issues when
building which can get lost in the stream of warning messages. It also
helps restore the ability to build the compiler with gcc.
Despite being otherwise disconnected from the
constraint system, it's possible for it to affect
how we type-check tuple matches in certain cases.
This is due to the fact that:
- It can have a lower type variable ID than an
opened generic parameter type, so becomes the
representative when merged with it. And because it
has a different locator, this can influence
binding prioritization.
- Tuple subtyping is broken, as it's currently a
*weaker* relationship than conversion.
Therefore, temporarily restore this bit of logic
for language versions < 6. If possible, we should
try and fix tuple subtying in Swift 6 mode to not
accept label mismatches, so that it's not more
permissive than tuple conversion.
rdar://85263844
Allow `LinkedExprAnalyzer` to capture `??` operator and walk into
its arguments because they could have valuable type information,
but don't attempt to favor or link operators if `??` is present in a chain.
Resolves: rdar://85277993
Previously this check was guarding against this
case, however with the argument list refactoring,
it's now possible for regular tuples to have
ApplyExpr parents. As such, broaden the check to
handle any tuple expr.
if the expression is an argument to `#selector`.
For `#selector` arguments, functions and properties are syntactically distinct
with the getter/setter label, so the solver should not unconditionally prefer
properties to unapplied functions. A better fix for this is to port over the
`#selector` diagnostics from CSApply, and not attempt invalid disjunction choices
based on the selector kind on the valid code path.
Previously we were introducing a type variable
to mark a constructor's parameter list as
`TVO_PrefersSubtypeBinding`. Unfortunately this
relies on representing the parameter list as a
tuple, which will no longer be properly supported
once param flags are removed from tuple types.
Move the logic into CSRanking such that we pick up
and compare the parameter lists when comparing
overload bindings. For now, this still relies on
comparing the parameter lists as tuples, as there's
some subtle tuple subtyping rules that could
potentially affect source compatibility here, but
at least we can explicitly strip the parameter
flags and localise the hack to CSRanking rather
than exposing it as a constraint.
Use this new element to represent the overload type
for a constructor call, and have it store a bit
indicating whether the call is for a short-form
`X(...)` or self-delegating `self.init(...)` call.