...with a better message than the generic "older version of the
compiler" one, when we know it's actually a different version of
Swift proper.
This still uses the same internal module version numbers to check
if the module is compatible; the presentation of language versions
is a diagnostic thing only.
Speaking of module version numbers, this deliberately does NOT
increment VERSION_MINOR; it's implemented in a backwards-compatible
way.
This will only work going forwards, of course; all existing modules
don't have a short version string, and I don't feel comfortable
assuming all older modules we might encounter are "Swift 2.2".
rdar://problem/25680392
We want to distinguish the special case of a library built with
-sil-serialize-all, from a SIL function that is [fragile] because
of an explicitly @_transparent or @inline(__always).
For now, NFC.
We did not serialize them because getting USR for extensions is tricky (USRs are
usually for value decls). This commit starts to make up an USR for an extension by combining
the extended nominal's USR with the USR of the first value member of the extension. We use
this made-up USR to associate doc comments when (de)serializing them.
The two types are nearly identical, and Fixnum is only in the Swift branches of LLVM,
not in mainline LLVM.
I do want to add ++ to PointerEmbeddedInt and fix some of this ugliness, but that'll
have to go through LLVM review, so it might take a bit.
Use the isScoped() bit to distinguish scoped imports from submodule
imports (both of which are split by null bytes in the string) so that we
don't try to lookup a submodule name as if it were a decl (leading to
assertion failures when it wasn't found).
This fixes interface generation of swift modules that import clang
submodules.
rdar://problem/24534122
Introduce Fix-Its to aid migration from selectors spelled as string
literals ("foo:bar:", which is deprecated), as well as from
construction of Selector instances from string literals
(Selector("foo:bar"), which is still acceptable but not recommended),
to the #selector syntax. Jump through some hoops to disambiguate
method references if there are overloads:
fixits.swift:51:7: warning: use of string literal for Objective-C
selectors is deprecated; use '#selector' instead
_ = "overloadedWithInt:" as Selector
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#selector(Bar.overloaded(_:) as (Bar) -> (Int) -> ())
In the cases where we cannot provide a Fix-It to a #selector
expression, we wrap the string literal in a Selector(...) construction
to suppress the deprecation warning. These are also easily searchable
in the code base.
This also means we're doing more validation of the string literals
that go into Selector, i.e., that they are well-formed selectors and
that we know about some method that is @objc and has that
selector. We'll warn if either is untrue.
Since resilience is a property of the module being compiled,
not decls being accessed, we need to record which types are
resilient as part of the module.
Previously we would only ever look at the @_fixed_layout
attribute on a type. If the flag was not specified, Sema
would slap this attribute on every type that gets validated.
This is wasteful for non-resilient builds, because there
all types get the attribute. It was also apparently wrong,
and I don't fully understand when Sema decides to validate
which decls.
It is much cleaner conceptually to just serialize this flag
with the module, and check for its presence if the
attribute was not found on a type.
That's how everything behaved anyway. Might as well make it explicit and
stop special-casing it.
I've left in compatibility for modules built with older compilers so that
people using the OS toolchains aren't immediately unable to debug their apps.
As soon as we change the module format in a more significant way, I can take
this out.
Groundwork for rdar://problem/21254367; see next commit.
Swift SVN r29437
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
Now that we can pick up search paths from frameworks (necessary to debug
them properly), we can end up with exponential explosions leading to the
same search path coming up thousands of times, which destroys compilation
time /and/ debugger responsiveness. This is already hitting people with
frameworks compiled for app extensions (due to a mistaken approximation
of whether or not something is a framework), but we're turning this on for
all frameworks in the immediate future.
rdar://problem/20291720
Swift SVN r27087
In particular, this is problematic when libraries are loaded dynamically, and
may have newer deployment targets than the main executable.
Swift SVN r26786
Primarily, unique normal protocol conformances and reference them via
a conformance ID. This eliminates the use of trailing records for
normal protocol conformances and (more importantly) the cases were we
would write incomplete conformances. The latter could cause problems
if we ever ended up deserializing an incomplete conformance without
also deserializing a complete record for that same conformance.
Secondarily, simplify the way we write conformances. They are now
always trailing records, and we separate out the derived conformance
kinds (specialized/inherited) from either a reference to a normal
conformance in the current module file (via a normal conformance ID)
or via a cross-reference to a conformance in another module file
(currently always a normal conformance, but this need not always be
the case). As part of this, make each conformance record
self-sustaining, so we don't have to push information down to the
reading routines (e.g., the conforming type) to actually produce a
proper conformance. This simplifies deserialization logic further.
Swift SVN r26482
Also into a separate file.
Before (swift/Serialization/SerializedModuleLoader.h):
ModuleStatus
SerializedModuleLoader::ValidationInfo
SerializedModuleLoader::ExtendedValidationInfo
SerializedModuleLoader::isSerializedAST
SerializedModuleLoader::validateSerializedAST
After (swift/Serialization/Validation.h):
serialization::Status
serialization::ValidationInfo
serialization::ExtendedValidationInfo
serialization::isSerializedAST
serialization::validateSerializedAST
No functionality change, just a lot of renaming and a bit of reorganizing.
Swift SVN r25226
...so that the debugger has the best possible chance of being able to load
the app properly.
We don't do this for frameworks today because we don't want to leak this
information into the public module; once we have a distinction between
"the module that ships with the framework" and "the module that goes into
the debug info" we can do this for frameworks as well.
Part of rdar://problem/17670778
Swift SVN r25204
There were no clients and it leaks information about the developer's system.
After this commit, there should be no full paths present in framework modules.
(App modules may contain search paths for debugging reasons, as well as a
full or relative path to the bridging header.)
Swift SVN r24851
Local type declarations are saved in the source file during parsing,
now serialized as decls. Some of these may be defined in DeclContexts
which aren't Decls and previously weren't serialized. Create four new
record kinds:
* PatternBindingInitializer
* DefaultArgumentInitializer
* AbstractClosureExpr
* TopLevelCodeDecl
These new records are used to only preserve enough information for
remangling in the debugger, and parental context relationships.
Finally, provide a lookup API in the module to search by mangled name.
With the new remangling API, the debugging lifecycle for local types
should be complete.
The extra LOCAL_CONTEXT record will compressed back down in a
subsequent patch.
Swift SVN r24739
There's also a testing option, -serialize-debugging-options, to force this
extra info to be serialized even for library targets. In the long run we'll
probably write out this information for all targets, but strip it out of
the "public module" when a framework is built. (That way it ends up in the
debug info's copy of the module.)
Incidentally, this commit includes the ability to add search paths to the
Clang importer on the fly, which is most of rdar://problem/16347147.
Unfortunately there's no centralized way to add search paths to both Clang
/and/ Swift at the moment.
Part of rdar://problem/17670778
Swift SVN r24545
This isn't being used for much yet, but it will allow us to tell whether
something is an app target even at the module-merging stage, which is a
better way to tell if something is an app than whether it has a bridging
header.
We'll also need this if we ever take advantage of reusing "partial modules"
(serialized ASTs for other parts of the module that aren't affected by the
current source file) for compiling source files in incremental builds;
unfortunately that's unlikely given our dependency model.
Swift SVN r24531
Refuse to load a module if it was compiled for a different architecture or
OS, or if its minimum deployment target is newer than the current target.
Additionally, provide the target triple as part of pre-loading validation
for clients who care (like LLDB).
Part of rdar://problem/17670778
Swift SVN r24469
Changing the design of this to maintain more local context
information and changing the lookup API.
This reverts commit 4f2ff1819064dc61c20e31c7c308ae6b3e6615d0.
Swift SVN r24432
rdar://problem/18295292
Locally scoped type declarations were previously not serialized into the
module, which meant that the debugger couldn't reason about the
structure of instances of those types.
Introduce a new mangling for local types:
[file basename MD5][counter][identifier]
This allows the demangle node's data to be used directly for lookup
without having to backtrack in the debugger.
Local decls are now serialized into a LOCAL_TYPE_DECLS table in the
module, which acts as the backing hash table for looking up
[file basename MD5][counter][identifier] -> DeclID mappings.
New tests:
* swift-ide-test mode for testing the demangle/lookup/mangle lifecycle
of a module that contains local decls
* mangling
* module merging with local decls
Swift SVN r24426
This reverts commit dc98e17d84b991b6be8b8feb5e0d05aad24f52a4.
I believe this commit was causing test failures on:
IRGen/c_layout.sil
IRGen/existentials.sil
It also recreates the file lib/Serialization/ModuleFormat.h,
which really can't have been intended.
Swift SVN r23732