SE-0364 was implemented to discourage "retroactive" conformances that might
conflict with conformances that could be introduced by other modules in the
future. These diagnostics should not apply to conformances that involve types
and protocols imported from the underlying clang module of a Swift module since
the two modules are assumed to be developed in tandem by the same owners,
despite technically being separate modules from the perspective of the
compiler.
The diagnostics implemented in https://github.com/apple/swift/pull/36068 were
designed to take underlying clang modules into account. However, the
implementation assumed that `ModuleDecl::getUnderlyingModuleIfOverlay()` would
behave as expected when called on the Swift module being compiled.
Unfortunately, it would always return `nullptr` and thus conformances involving
the underlying clang module are being diagnosed unexpectedly.
The fix is to make `ModuleDecl::getUnderlyingModuleIfOverlay()` behave as
expected when it is made up of `SourceFile`s.
Resolves rdar://121478556
Fix a typo in the name of legacy layout file name that causes the legacy
layouts are not ingested into the CASFS for cached compilation.
rdar://119622429
* Remove 'OptimizeArgs = true' on the ClangDependencyScanningService init
With the new API this is no longer a boolean and the new default value of 'ScanningOptimizations::Default' matches the behavior we had prior to this change.
This matches the current behavior in `ImportResolution`. The change refactors an existing utility function to do this check from `UnboundImport` to a common utility used now also in the scanner.
The code, previously, only properly handled such dependencies being a distinct category for Swift source and Swift textual dependency infos. Swift binary module dependencies must handle this similarly and this change adds the missing support for them. Recent refactor of the scanner also means that now Swift binary dependencies with Swift overlay dependencies may crash the scanner, and this change resolves this as well.
Resolves rdar://117088840
Allow DependencyScanner to canonicalize path using a prefix map. When
option `-scanner-prefix-map` option is used, dependency scanner will
remap all the input paths in following:
* all the paths in the CAS file system or clang include tree
* all the paths related to input on the command-line returned by scanner
This allows all the input paths to be canonicalized so cache key can be
computed reguardless of the exact on disk path.
The sourceFile field is not remapped so build system can track the exact
file as on the local file system.
'ModuleDependencyScanner' maintains a Thread Pool along with a pool of workers
which are capable of executing a filesystem lookup of a named module dependency.
When resolving imports of a given Swift module, each import's resolution
operation can be issued asunchronously.
From being a scattered collection of 'static' methods in ScanDependencies.cpp
and member methods of ASTContext. This makes 'ScanDependencies.cpp' much easier
to read, and abstracts the actual scanning logic away to a place with common
state which will make it easier to reason about in the future.
dependencies
It is valuable for clients to be able to distinguish which dependencies of a
Swift module originated from 'import' statements, and which ones are implicit
dependency Swift overlays of imported Clang modules.
Instead of the code querying the compiler's built-in Clang instance, refactor the
dependency scanner to explicitly keep track of module output path. It is still
set according to '-module-cache-path' as it has been prior to this change, but
now the scanner can use a different module cache for scanning PCMs, as specified
with '-clang-scanner-module-cache-path', without affecting module output path.
Resolves rdar://113222853
Unlike `swift-frontend -scan-dependencies` option, when dependency
scanner is used as a library by swift driver, the SwiftScanningService
is shared for multiple driver invocations. It can't keep states (like
common file dependencies) that can change from one invocation to
another.
Instead, the clang/SDK file dependencies are computed from each driver
invocations to avoid out-of-date information when scanning service is
reused.
The test case for a shared Service will be added to swift-driver repo
since there is no tool to test it within swift compiler.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Rename `-enable-cas` to `-compile-cache-job` to align with clang option
names and promote that to a new driver only flag.
Few other additions to driver flag for caching behaviors:
* `-compile-cache-remarks`: now cache hit/miss remarks are guarded behind
this flag
* `-compile-cache-skip`: skip replaying from the cache. Useful as a
debugging tool to do the compilation using CAS inputs even the output
is a hit from the cache.
Teach swift dependency scanner to use CAS to capture the full dependencies for a build and construct build commands with immutable inputs from CAS.
This allows swift compilation caching using CAS.
Instead of being a part of 'directDependencies' on a module dependency info, make them a separate array of dependency IDs for Swift Source and Textual modules.
This will allow clients to still distinguish direct module dependencies imported from a given module, versus dependencies added because direct/transitive Clang module dependencies have Swift overlays.
This change does *not* remove overlay dependencies from 'directDependencies' yet, just adds them as a separate field on the module details info. A followup change will remove overlay and bridging header dependencies from 'directDependencies' once the clients have had a chance to adopt to this change.
For a `@Testable` import in program source, if a Swift interface dependency is discovered, and has an adjacent binary `.swiftmodule`, open up the module, and pull in its optional dependencies. If an optional dependency cannot be resolved on the filesystem, fail silently without raising a diagnostic.
Instead, treat them like any other module that is specific to the scanning context hash of the scan it originates from.
Otherwise we may actually have simultaneous scans happening for the same source module but with different context hashes, and the current scheme leads to collisions.
Using mutual exclusion, ensuring that multiple threads executing dependency scans do not encounter data races on shared mutable state.
There are two layers with shared state where we need to be careful:
- `DependencyScanningTool`, as the main entity that scanning clients interact with. This tool instantiates compiler instances for individual scans, computing a scanning invocation hash. It needs to remember those instances for future use, and when creating instances it needs to reset LLVM argument processor's global state, meaning all uses of argument processing must be in a critical section.
- `SwiftDependencyScanningService`, as the main cache where dependency scanning results are stored. Each individual scan instantiates a `ModuleDependenciesCache`, which uses the scanning service as the underlying storage. The services' storage is segmented to storing dependencies discovered in a scan with a given context hash, which means two different scanning invocations running at the same time will be accessing different locations in its storage, thus not requiring synchronization. But the service still has some shared state that must be protected, such as the collection of discovered source modules, and the map used to query context-hash-specific underlying cache storage.
If a scanner instance is used for multiple scans, the `SwiftDependencyScanningService` will have collected prior scans' main source modules' dependency info.
Suppose the scanner first scans a source module `A` and records its dependencies. If a successive scan of some source module `B` finds that it depends on `A`, it would get a cache hit on the source module from a prior scan and re-use dependency information. This change no longer allows such re-use of the prior source module scan dependencies. Said prior scan may have had an entirely different context and therefore different set of dependencies on `A` than may be visible otherwise. Instead, all scanning actions must rely on such modules being re-discovered on the filesystem.
This changes the scanner's behavior to "resolve" a discovered module's dependencies to a set of Module IDs: module name + module kind (swift textual, swift binary, clang, etc.).
The 'ModuleDependencyInfo' objects that are stored in the dependency scanner's cache now carry a set of kind-qualified ModuleIDs for their dependencies, in addition to unqualified imported module names of their dependencies.
Previously, the scanner's internal state would cache a module dependnecy as having its own set of dependencies which were stored as names of imported modules. This led to a design where any time we needed to process the dependency downstream from its discovery (e.g. cycle detection, graph construction), we had to query the ASTContext to resolve this dependency's imports, which shouldn't be necessary. Now, upon discovery, we "resolve" a discovered dependency by executing a lookup for each of its imported module names (this operation happens regardless of this patch) and store a fully-resolved set of dependencies in the dependency module info.
Moreover, looking up a given module dependency by name (via `ASTContext`'s `getModuleDependencies`) would result in iterating over the scanner's module "loaders" and querying each for the module name. The corresponding modules would then check the scanner's cache for a respective discovered module, and if no such module is found the "loader" would search the filesystem.
This meant that in practice, we searched the filesystem on many occasions where we actually had cached the required dependency, as follows:
Suppose we had previously discovered a Clang module "foo" and cached its dependency info.
-> ASTContext.getModuleDependencies("foo")
--> (1) Swift Module "Loader" checks caches for a Swift module "foo" and doesn't find one, so it searches the filesystem for "foo" and fails to find one.
--> (2) Clang Module "Loader" checks caches for a Clang module "foo", finds one and returns it to the client.
This means that we were always searching the filesystem in (1) even if we knew that to be futile.
With this change, queries to `ASTContext`'s `getModuleDependencies` will always check all the caches first, and only delegate to the scanner "loaders" if no cached dependency is found. The loaders are then no longer in the business of checking the cached contents.
To handle cases in the scanner where we must only lookup either a Swift-only module or a Clang-only module, this patch splits 'getModuleDependencies' into an alrady-existing 'getSwiftModuleDependencies' and a newly-added 'getClangModuleDependencies'.
Adopts Clang's 'DependencyScanningWorkerFilesystem' for use by the scanner, with the persistent
scanner instance keeping a 'DependencyScanningFilesystemSharedCache'.
Introduces a concept of a dependency scanning action context hash, which is used to select an instance of a global dependency scanning cache which gets re-used across dependency scanning actions.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
It was recently moved to the ModuleDependenciesCache. This is undesireable, instead this should live in the GlobalModuleDependenciesCache so that we benefit from the filesystem caching it performs across diferent scanning actions.
Move clangScanningTool and clangScanningService to be parts of 'ModuleDependenciesCache' state, getting rid of the 'ClangModuleDependenciesCacheImpl', which is no-longer needed since we moved moved to by-name lookup of Clang modules.
This change tweaks the 'GlobalModuleDependenciesCache', which persists across scanner invocations with the same 'DependencyScanningTool' to no longer cache discovered Clang modules.
Doing so felt like a premature optimization, and we should instead attempt to share as much state as possible by keeping around the actual Clang scanner's state, which performs its own caching. Caching discovered dependencies both in the Clang scanner instance, and in our own cache is much more error-prone - the Clang scanner has a richer context for what is okay and not okay to cache/re-use.
Instead, we still cache discovered Clang dependencies *within* a given scan, since those are discovered using a common Clang scanner instance and should be safe to keep for the duration of the scan.
This change should make it simpler to pin down the core functionality and correctness of the scanner.
Once we turn our attention to the scanner's performance, we can revisit this strategy and optimize the caching behaviour.
When we are building a Swift module which has an underlying Clang module, and which generates an ObjC interface ('-Swift.h'), the mechanism for building the latter involves a VFS redirect of its modulemap to one that does not yet have the generated Swift code, because it must be built before the Swift portion is built because the Swift portion depends on it. This means that the invocation to build this module is different to one used by the clients which depend on this module.
To avoid the subsequent client scans from re-using the partial (VFS-redirected) module, ensure that we do not store dependency info of the underlying Clang module into the global scanner cache. This will cause subsequent client scans to re-scan for this module, and find the fully-resolved modulemap without a VFS redirect.
Resolves rdar://88309064
And only resolve cached dependencies that came from scanning actions with the same target triple.
This change means that the `GlobalModuleDependenciesCache` must be configured with a specific target triple for every scannig action, and it will only resolve previously-found dependencies from previous scannig actions using the exact same triple.
Furthermore, the `GlobalModuleDependenciesCache` separately tracks source-file-based module dependencies as those represent main Swift modules of previous scanning actions, and we must be able to resolve those regardless of the target triple.
Resolves rdar://83105455