- Instead of keeping multiple flags in the type descriptor flags,
just keep a single flag indicating the presence of additional
import information after the name.
- That import information consists of a sequence of null-terminated
C strings, terminated by an empty string (i.e. by a double null
terminator), each prefixed with a character describing its purpose.
- In addition to the symbol namespace and related entity name,
include the ABI name if it differs from the user-facing name of the
type, and make the name the user-facing Swift name.
There's a remaining issue here that isn't great: we don't correctly
represent the parent relationship between error types and their codes,
and instead we just use the Clang module as the parent. But I'll
leave that for a later commit.
- `swift_getForeignTypeMetadata` is now a request/response function.
- The initialization function is now a completion function, and the
pointer to it has moved into the type descriptor.
- The cache variable is no longer part of the ABI; it's an
implementation detail of the access function.
- The two points above mean that there is no special header on foreign
type metadata and therefore that they can be marked constant when
there isn't something about them that needs to be initialized.
The only foreign-metadata initialization we actually do right now is
of the superclass field of a foreign class, and since that relationship
is a proper DAG, it's not actually possible to have recursive
initialization problems. But this is the right long-term thing to do,
and it removes one of the last two clients of once-based initialization.
As part of this, rename TypeMetadataRecordKind to TypeReferenceKind
and consistently give it three bits of storage.
The better modelling of these type references appears to have been
sufficient to make dynamic conformance checks succeed, which is good
but unexpected.
Reimplement protocol descriptors for Swift protocols as a kind of
context descriptor, dropping the Objective-C protocol compatibility
layout. The new protocol descriptors have several advantages over the
current implementation:
* They drop all of the unused fields required for layout-compatibility
with Objective-C protocols.
* They encode the full requirement signature of the protocol. This
maintains more information about the protocol itself, including
(e.g.) correctly encoding superclass requirements.
* They fit within the general scheme of context descriptors, rather than
being their own thing, which allows us to share more code with
nominal type descriptors.
* They only use relative pointers, so they’re smaller and can be placed
in read-only memory
Implements rdar://problem/38815359.
Use ProtocolDescriptorRefs within the runtime representation of
existential type metadata (TargetExistentialTypeMetadata) instead of
bare protocol descriptor pointers. Start rolling out the use of
ProtocolDescriptorRef in a few places in the runtime that touch this
code. Note that we’re not yet establishing any strong invariants on
the TargetProtocolDescriptorRef instances.
While here, replace TargetExistentialTypeMetadata’s hand-rolled pointer
arithmetic with swift::ABI::TrailingObjects and centralize knowledge of
its layout better.
Clang-importer-synthesized declarations get an extra tag character included in their mangling, which was not being preserved in type context descriptors. This caused runtime lookup for these synthesized types to fail. Fix this by adding the tag information to type context descriptors and teaching the runtime to match it up when fetching metadata by mangled name. Fixes rdar://problem/40878715.
We want to be able to potentially introduce new metadata kinds in future Swift compilers, so a runtime ought to be able to degrade gracefully in the face of metadata kinds it doesn't know about. Remove attempts to exhaustively switch over metadata kinds and instead treat unknown metadata kinds as opaque.
There are multiple reasons to do this. Primarily this is
useful as an optimization. Whenever analysis can determine that no
potentially conflicting access occurs within the scope, the access can
be demoted to "nontracking". It is also useful as an escape hatch for
future code deploying to older runtimes. For example, if a future access
scope may cross threads, and the older runtime doesn't know how to
migrate threads.
See <rdar://problem/37507434> add a flag to swift_beginAccess to inform
the runtime that an access might migrate between threads
I de-templated MetadataState and MetadataRequest because we weren't
relying on the template and because using the template was causing
conversion problems due to the inability to directly template an enum
in C++.
Rename it to swift_initClassMetadata() just like we recently did
swift_initStructMetadata(), and add a StructLayoutFlags parameter
so we can version calls to this function in the future.
Maybe at some point this will become a separate ClassLayoutFlags
type, but at this point it doesn't matter because IRGen always
passes a value of 0.
This includes global generic and non-generic global access
functions, protocol associated type access functions,
swift_getGenericMetadata, and generic type completion functions.
The main part of this change is that the functions now need to take
a MetadataRequest and return a MetadataResponse, which is capable
of expressing that the request can fail. The state of the returned
metadata is reported as an second, independent return value; this
allows the caller to easily check the possibility of failure without
having to mask it out from the returned metadata pointer, as well
as allowing it to be easily ignored.
Also, change metadata access functions to use swiftcc to ensure that
this return value is indeed returned in two separate registers.
Also, change protocol associated conformance access functions to use
swiftcc. This isn't really related, but for some reason it snuck in.
Since it's clearly the right thing to do, and since I really didn't
want to retroactively tease that back out from all the rest of the
test changes, I've left it in.
Also, change generic metadata access functions to either pass all
the generic arguments directly or pass them all indirectly. I don't
know how we ended up with the hybrid approach. I needed to change all
the code-generation and calls here anyway in order to pass the request
parameter, and I figured I might as well change the ABI to something
sensible.
The allocation phase is guaranteed to succeed and just puts enough
of the structure together to make things work.
The completion phase does any component metadata lookups that are
necessary (for the superclass, fields, etc.) and performs layout;
it can fail and require restart.
Next up is to support this in the runtime; then we can start the
process of making metadata accessors actually allow incomplete
metadata to be fetched.
The layout changes to become relative-address based. For this to be
truly immutable (at least on Darwin), things like the RO data patterns
must be moved out of the pattern header. Additionally, compress the
pattern header so that we do not include metadata about patterns that
are not needed for the type.
Value metadata patterns just include the metadata kind and VWT.
The design here is meant to accomodate non-default instantiation
patterns should that become an interesting thing to support in the
future, e.g. for v-table specialization.
Minimize the generic class metadata template by removing the
class header and base-class members. Add back the set of
information that's really required for instantiation.
Teach swift_allocateGenericClass how to allocate classes without
superclass metadata. Reorder generic initialization to establish
a stronger phase-ordering between allocation (the part that doesn't
really care about the generic arguments) and initialization (the
part that really does care about the generic arguments and therefore
might need to be delayed to handle metadata cycles).
A similar thing needs to happen for resilient class relocation.
We dump the following information:
1. The Kind.
2. Pointer to the value witnesses.
3. Pointer to the class object if one is available.
4. Pointer the type context description if one is available.
5. Pointer to the generic arguments if one is available.
This makes it significantly easier to poke around Metadata.
rdar://34222540
This is useful when trying to track down data corruption in the runtime. I am
currently running into such issues with the +0-all-arg work, so I am adding
stuff like this to help debug this issue and future such issues.
rdar://34222540
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.
Extend witness tables with a pointer to the protocol conformance
descriptor from which the witness table was generated. This will allow
us to determine (for example) whether two witness tables were
generated from the same (or equivalent) conformances in the future, as
well as discover more information about the witness table itself.
Fixes rdar://problem/36287959.
Protocol conformance records are becoming richer and more interesting;
separate out the "flags" word and add the various other fields that we
want there (is-retroactive, is-synthesized-nonunique, # of conditional
requirements).
The nominal type access functions took all of the generic arguments
directly, which is hard to call from the runtime. Instead, pass up to
three generic arguments directly (because it’s good for code size), and put the rest into an array.
Introduce a flags parameter to swift_getTupleTypeMetadata(). Add a flag
stating when the "labels" parameter points into nonconstant memory, in
which case we need to make a copy of the string before adding an entry
into the concurrent map.
Now that we use nominal type descriptors for everything that we can within
protocol conformance records, eliminate the unused
"NonuniqueDirectType" case and all of the code that supports it. Leave
this value explicitly reserved for the future.
Nominal type descriptors are not always unique, so testing them via pointer
equality is not correct. Introduce an "isEqual()" operation for
nominal type descriptors that performs the appropriate equality check,
using pointer equality when possible, and falling back to string
comparisons of the mangled type name when it is not possible.
Introduce a "nonunique" flag into nominal type descriptors to describe
when they are, in fact, not unique. The only nonunique nominal type
descriptors currently come from Clang-imported types; all
Swift-defined types have unique nominal type descriptors. Use this
flag to make the aforementioned operation efficient in the "unique"
case.
Use the new isEqual() operation for protocol conformance lookup, and
make sure we're caching results based on the known-canonical nominal
type descriptor.
Use the spare bits within the type reference field to describe the kinds
of type metadata records, so that we no longer need to rely on a
separate "flags" field.
Rather than emitting unique, direct type metadata for non-foreign
types, emit a reference to the nominal type descriptor. This collapses
the set of type metadata reference kinds to 3: nominal type
descriptor, (indirect) Objective-C class object, and nonuniqued
foreign type metadata.
Now that references to Objective-C class objects are indirected
(via UniqueIndirectClass), classes with Swift type metadata can be
directly referenced (via UniqueDirectType) rather than hopping through
swift_getObjCClassMetadata().