* Change the RemoteMirror API to have extensible data layout callback
* Use DLQ_Get prefix on DataLayoutQueryType enum values
* Simplify MemoryReaderImpl and synthesize minimalDataLayoutQueryFunction
Mark the public interfaces with the appropriate visibility/dll storage.
This fixes an issue with the Windows build which keeps the
SwiftRemoteMirror.dll out of date constantly as no import library is
created. That occurs due to the fact that the library does not export
any interfaces.
Take the opportunity to move the public interfaces to protected
visibility on ELF.
* Remove getPointerSize and getSizeSize functions, replace with a single PointerSize value.
* Remove imageLength parameter from addImage, calculate it internally instead.
* Check remote mirrors libraries' metadata version and reject them if it's too old.
* Shim GetStringLength and GetSymbolAddress for the legacy library since we don't pass the caller's context pointer through directly.
* Actually set the IsLegacy flag in the Library struct.
* Implement ownsObject by tracking each added image's data segment and checking metadata pointers against them. The previous approach didn't work.
ELF is segment mapped, where the segment which contains a particular
section may be mapped to an address which does not correspond to the
address on disk. Since the reflection dumper does not use the loader to
load the image into memory, we must manually account for any section
offsets. Calculate this value when we query the mmap'ed image and wire
it through to the relative direct pointer accesses.
When switching to the linker table approach for the ELF metadata
introspection, this was uncovered as the segment containing the orphaned
sections was coalesced into a separate PT_LOAD header which had a non-0
offset for the mapping.
The approach here is to split this into two cases:
- If all case payloads have a fixed size, spare bits may be
potentially used to differentiate between cases, and the
remote reflection library does not have enough information to
compute the layout itself.
However, the total size must be fixed, so IRGen just emits a
builtin type descriptor (which I need to rename to 'fixed type
descriptor' since these are also used for imported value types,
and now, certain enums).
- If at least one case has a size that depends on a generic
parameter or is a resilient type, IRGen does not know the size,
but this means fancy tricks with spare bits cannot be used either.
The remote reflection library uses the same approach as the
runtime, basically taking the maximum of the payload size and
alignment, and adding a tag byte.
As with single-payload enums, we produce a new kind of
RecordTypeInfo, this time with a field for every enum case.
All cases start at offset zero (but of course this might change,
if for example we put the enum tag before the address point).
Also, just as with single-payload enums, there is no remote
'project case index' operation on ReflectionContext yet.
So the the main benefit from this change is that we don't entirely
give up when doing layout of class instances containing enums;
however, tools still cannot look inside the enum values themselves,
except in the simplest cases involving optionals.
Notably, the remote reflection library finally understands all
of the standard library's collection types -- Array, Character,
Dictionary, Set, and String.
Attempt to lay out single-payload enums, using knowledge of extra
inhabitants where possible.
- The extra inhabitants of an aggregate are the extra inhabitants of
the first field. If the first field is empty, there are no extra
inhabitants, and subsequent fields do not affect anything.
- Function pointers and metatypes have different extra inhabitants
than Builtin.RawPointer, so have IRGen emit distinct builtin type
descriptors for those.
- Opaque existentials do not have extra inhabitants.
- Weak references do not have extra inhabitants.
Also, fix IRGen to emit more accurate enum reflection metadata in
these two cases:
- We now record whether enum cases are indirect or not. An indirect
case is the same as a payload case with Builtin.NativeObject.
- We now record whether a case is empty or not using the same logic
as the rest of IRGen. Previously, we would incorrectly emit a
payload type for a case with a payload that is an empty struct,
for example.
At this point we don't have a way to get the currently inhabited
enum case from a value. However, this is still an improvement because
we can still reflect other fields of aggregates containing enums,
instead of just giving up.
Finally make some methods on TypeCoverter private, and use 'friend'
to allow them to be accessed from other internal classes, making the
public API simpler.
They would think the type 'addr_t' is defined in the standard library
because it has the same name format with the types in <cstdint>. In
addition, the definition conflicts in Cygwin which defines it differently
in the system library.
This adds various MetadataReader methods to support closure layout:
- Reading generic arguments from metadata
- Reading parent metadata
- Reading capture descriptor from heap metadata
To a large extent, this is not currently taken advantage of, because
SILGen always wraps address-only captures in SIL box types.
Tests are in the next patch.
Remote metadata for closure contexts points to a capture descriptor.
We have a local copy of all capture descriptors. Translate the
address by recording the local and remote start address of
reflection metadata.
Implement the ReflectionContext's implementation of:
swift_reflection_projectExistential.
First, we get the type info of the existential typeref - it should be a
record type info. If it's a class existential, it has trivial layout:
the first word is a pointer to the class instance. Otherwise, if the
value fits in the 3-word buffer of the existential container, it
trivially is also at the start of the container. Otherwise, the value is
off in a heap box somewhere, but the first word of the container is a
pointer to that box.