For now, the accessors have been underscored as `_read` and `_modify`.
I'll prepare an evolution proposal for this feature which should allow
us to remove the underscores or, y'know, rename them to `purple` and
`lettuce`.
`_read` accessors do not make any effort yet to avoid copying the
value being yielded. I'll work on it in follow-up patches.
Opaque accesses to properties and subscripts defined with `_modify`
accessors will use an inefficient `materializeForSet` pattern that
materializes the value to a temporary instead of accessing it in-place.
That will be fixed by migrating to `modify` over `materializeForSet`,
which is next up after the `read` optimizations.
SIL ownership verification doesn't pass yet for the test cases here
because of a general fault in SILGen where borrows can outlive their
borrowed value due to being cleaned up on the general cleanup stack
when the borrowed value is cleaned up on the formal-access stack.
Michael, Andy, and I discussed various ways to fix this, but it seems
clear to me that it's not in any way specific to coroutine accesses.
rdar://35399664
I am doing this for two reasons:
1. I am going to use this in function signature opts to prove that a guaranteed
parameter is "consumed".
2. It puts the ownership verifier on a diet.
rdar://38196046
Mandatory pass will clean it up and replace it by a copy_block and
is_escaping/cond_fail/release combination on the %closure in follow-up
patches.
The instruction marks the dependence of a block on a closure that is
used as an 'withoutActuallyEscaping' sentinel.
rdar://39682865
Since the functions produce pointers with tightly-scoped lifetimes there's no formal reason these have to only work on `inout` things. Now that arguments can be +0, we can even do this without copying values that we already have at +0.
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
I have a bunch of work that I have done on a side branch some time ago to split
determining what value ownership kinds are able to be associated with a specific
operand.
This PR just upstreams a small part of the larger change.
The ownership verifier diagnoses leaks of owned objects in two different
places/ways:
1. If the owned value does not have any "consuming" uses, we bail early without
performing dataflow verification.
2. If the owned value has at least 1 "consuming" uses, we perform dataflow to
determine the blocks where the leaked value escapes without being destroyed.
In the latter case, we give a nice error message saying that a leak occured. In
contrast in the former, we go down a "generic error" path that just says that a
"lifetime ending use" is required. This commit changes that generic error
message for owned parameters to say that the value was leaked, resulting in a
clearer message. The other cases are still left along though.
I also added a test file to specifically test leaks/leak error messages. I added
a few tests to make sure this error message is correct and a few more tests just
for fun.
- @noescape functions are trivial types
That makes @noescape functions incompatible with escaping functions.
- Forward ownership of mark_dependence %3 : callee_guaranteed () -> () on %0 : noescape @callee_guaranteed () -> ()
- SIL: Add ABIEscapeToNoEscapeConversion to SILFunctionType::ABICompatibilityCheckResult
- SIL: A thin_to_thick_function with a @noescape result type has trivial ownership
- SIL: thin_to_thick_function can create noescape function types
Part of:
SR-5441
rdar://36116691
Enums require special handling in the ownership verifier since an enum is a sum
type whose triviality or non-triviality is erased at function arguments. When
the ownership verifier was changed to allow for owned values to be passed as
guaranteed objects via instantaneous borrowing, this code was not updated.
rdar://34222540
@noescape function types will eventually be trivial. A
convert_escape_to_noescape instruction does not take ownership of its
operand. It is a projection to the trivial value carried by the closure
-- both context and implementation function viewed as a trivial value.
A safe SIL program must ensure that the object that the project value is based
on is live beyond the last use of the trivial value. This will be
achieve by means of making the lifetimes dependent.
For example:
%e = partial_apply [callee_guaranteed] %f(%z) : $@convention(thin) (Builtin.Int64) -> ()
%n = convert_escape_to_noescape %e : $@callee_guaranteed () -> () to $@noescape @callee_guaranteed () -> ()
%n2 = mark_dependence %n : $@noescape @callee_guaranteed () -> () on %e : $@callee_guaranteed () -> ()
%f2 = function_ref @use : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %f2(%n2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
release_value %e : $@callee_guaranteed () -> ()
Note: This is not yet actually used.
Part of:
SR-5441
rdar://36116691
* Reduce array abstraction on apple platforms dealing with literals
Part of the ongoing quest to reduce swift array literal abstraction
penalties: make the SIL optimizer able to eliminate bridging overhead
when dealing with array literals.
Introduce a new classify_bridge_object SIL instruction to handle the
logic of extracting platform specific bits from a Builtin.BridgeObject
value that indicate whether it contains a ObjC tagged pointer object,
or a normal ObjC object. This allows the SIL optimizer to eliminate
these, which allows constant folding a ton of code. On the example
added to test/SILOptimizer/static_arrays.swift, this results in 4x
less SIL code, and also leads to a lot more commonality between linux
and apple platform codegen when passing an array literal.
This also introduces a couple of SIL combines for patterns that occur
in the array literal passing case.
We can just !SILFunction::hasQualifiedOwnership(). Plus as Andy pointed out,
even ignoring the functional aspects, having APIs with names this close can
create confusion.