@noescape function types will eventually be trivial. A
convert_escape_to_noescape instruction does not take ownership of its
operand. It is a projection to the trivial value carried by the closure
-- both context and implementation function viewed as a trivial value.
A safe SIL program must ensure that the object that the project value is based
on is live beyond the last use of the trivial value. This will be
achieve by means of making the lifetimes dependent.
For example:
%e = partial_apply [callee_guaranteed] %f(%z) : $@convention(thin) (Builtin.Int64) -> ()
%n = convert_escape_to_noescape %e : $@callee_guaranteed () -> () to $@noescape @callee_guaranteed () -> ()
%n2 = mark_dependence %n : $@noescape @callee_guaranteed () -> () on %e : $@callee_guaranteed () -> ()
%f2 = function_ref @use : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %f2(%n2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
release_value %e : $@callee_guaranteed () -> ()
Note: This is not yet actually used.
Part of:
SR-5441
rdar://36116691
This is going to be used for "always emit into client" functions,
such as default argument generators and stored property
initializers.
- In dead function elimination, these functions behave identically to
public functions, serving as "anchors" for the mark-and-sweep
analysis.
- There is no external variant of this linkage, because external
declarations can use HiddenExternal linkage -- the definition should
always be emitted by another translation unit in the same Swift
module.
- When deserialized, they receive shared linkage, because we want the
linker to coalesce multiple copies of the same deserialized
definition if it was deserialized from multiple translation units
in the same Swift module.
- When IRGen emits a definition with this linkage, it receives the
same LLVM-level linkage as a hidden definition, ensuring it does not
have a public entry point.
This has three principal advantages:
- It gives some additional type-safety when working
with known accessors.
- It makes it significantly easier to test whether a declaration
is an accessor and encourages the use of a common idiom.
- It saves a small amount of memory in both FuncDecl and its
serialized form.
* Reduce array abstraction on apple platforms dealing with literals
Part of the ongoing quest to reduce swift array literal abstraction
penalties: make the SIL optimizer able to eliminate bridging overhead
when dealing with array literals.
Introduce a new classify_bridge_object SIL instruction to handle the
logic of extracting platform specific bits from a Builtin.BridgeObject
value that indicate whether it contains a ObjC tagged pointer object,
or a normal ObjC object. This allows the SIL optimizer to eliminate
these, which allows constant folding a ton of code. On the example
added to test/SILOptimizer/static_arrays.swift, this results in 4x
less SIL code, and also leads to a lot more commonality between linux
and apple platform codegen when passing an array literal.
This also introduces a couple of SIL combines for patterns that occur
in the array literal passing case.
Previously, when in the debugger and dumping out SIL code, the
printer would crash if it encountered a null operand. If you
are dumping a basic block, this means that the dump stops at
that instruction instead of showing you the whole block. Null
operands can happen when you call dropAllReferences() but have
yet to delete the instruction.
Now the printer is a bit more resilient. We probably don't catch
all the cases, but we handle a lot of them, e.g.:
%116 = apply <<NULL OPERAND>>(<<NULL OPERAND>>, <<NULL OPERAND>>) : <<NULL CALLEE>>
debug_value <<NULL OPERAND>>, let, name "c", argno 1 // id: %120
retain_value <<NULL OPERAND>> // id: %138
Since this is only relevant to invalid IR, this is just
a debugging aid, so no testcase.
Now that we have interface types in witness tables, make sure to set the
appropriate generic environment when printing witness tables. This
ensures that we get the resugared generic type parameter names.
For now these are underscored attributes, i.e. compiler internal attributes:
@_optimize(speed)
@_optimize(size)
@_optimize(none)
Those attributes override the command-line specified optimization mode for a specific function.
The @_optimize(none) attribute is equivalent to the already existing @_semantics("optimize.sil.never") attribute
...as detected by initializing an individual field without having
initialized the whole object (via `self = value`).
This only applies in pre-Swift-5 mode because the next commit will
treat all cross-module struct initializers as delegating in Swift 5.
The reason that I am doing this is in preparation for adding support for
MultipleValueInstruction. This enables us to avoid type issues and also ensures
that we do not increase the size of SingleValueInstruction while we are doing
it.
The MultipleValueInstruction commit will come soon.
rdar://31521023
This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
Specifically, load profiler counts corresponding to 'if' AST nodes and
attach them to the corresponding CondBranchInst's in SIL.
This is done using dirty tricks and isn't tested well enough :(.
- Hack the SIL printer to make profile count loading testable.
- Hack the profiler's counter map to store the indices of parent
region counters in entries for 'else stmts' and 'else exprs'.
It's too early to hack up the SILOptimizer to propagate profile counts.
It doesn't seem too hard, but I definitely don't know the code well
enough to write tests for it :(. So that's still a TODO.
Next, we should be able to produce some acutual llvm branch_weight
metadata!
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
This commit contains:
-) adding the new instructions + infrastructure, like parsing, printing, etc.
-) support in IRGen to generate global object-variables (i.e. "heap" objects) which are statically initialized in the data section.
-) IRGen for global_value which lazily initializes the object header and returns a reference to the object.
For details see the documentation of the new instructions in SIL.rst.
Static initializers are now represented by a list of literal and aggregate instructions in a SILGlobalVariable.
For details see SIL.rst.
This representation is cleaner than what we did so far (point to the initializer function and do some pattern matching).
One implication of that change is that now (a subset of) instructions not necessarily have a parent function.
Regarding the generated code it's a NFC.
Also the swift module format didn't change because so far we don't serializer global variables.
There is no need for us to manually call the abstract base class. The
visitor pattern will do that for us.
Also, make SILNodes.def and SILInstruction.h agree about the parent type
of the strong pin/unpin instructions.
Cleanup a bunch of indecipherable SIL parser logic related to these
casts. If you want to use a 100+ case switch, then the case
statements should be declarative. Don't open a new scope with its own
control flow and locals, and don't nest another giant switch within
a case.
Consider a class hierarchy like the following:
class Base {
func m1() {}
func m2() {}
}
class Derived : Base {
override func m2() {}
func m3() {}
}
The SIL vtable for 'Derived' now records that the entry for m1
is inherited, the entry for m2 is an override, and the entry
for m3 is a new entry:
sil_vtable Derived {
#Base.m1!1: (Base) -> () -> () : _T01a4BaseC2m1yyF [inherited]
#Base.m2!1: (Base) -> () -> () : _T01a7DerivedC2m2yyF [override]
#Derived.m3!1: (Derived) -> () -> () : _T01a7DerivedC2m3yyF
}
This additional information will allow IRGen to emit the vtable
for Derived resiliently, without referencing the symbol for
the inherited method m1() directly.
GenericSpecializationInformation contains information regarding how a given specialized function was created, e.g. which caller function triggered this specialization, which substitutions were used, etc. Provide some debugging flags to dump the collected specialization information.
The information about generic specializations is referenced by the specialized functions and by call-sites originating from specialized functions.
This information can be created/used by the generic specializer to detect generic call-sites whose specialization would result in non-terminating sequence of subsequent generic specializations.