reference to something of class type. This is required to model
RebindSelfInConstructorExpr correctly to DI, since in the class case,
self.init and super.init *take* a value out of class box so that it
can pass the +1 value without performing an extra retain. Nothing
else in the compiler uninitializes a DI-controlled memory object
like this, so nothing else needs this. DI really doesn't like something
going from initialized to uninitialized.
Yes, I feel super-gross about this and am really unhappy about it. I
may end up reverting this if I can find an alternate solution to this
problem.
Swift SVN r27525
Previously some parts of the compiler referred to them as "fields",
and most referred to them as "elements". Use the more generic 'elements'
nomenclature because that's what we refer to other things in the compiler
(e.g. the elements of a bracestmt).
At the same time, make the API better by providing "getElement" consistently
and using it, instead of getElements()[i].
NFC.
Swift SVN r26894
threaded into IRGen; tests to follow when that's done.
I made a preliminary effort to make the inliner do the
right thing with try_apply, but otherwise tried to avoid
touching the optimizer any more than was required by the
removal of ApplyInstBase.
Swift SVN r26747
We no longer need or use it since we can always refer to the same bit on
the applied function when deciding whether to inline during mandatory
inlining.
Resolves rdar://problem/19478366.
Swift SVN r26534
This makes it easier to diff and read SIL output. Since it is behind the -emit-sorted-sil
flag, there is no effect on normal compilation.
Swift SVN r26101
For better consistency with other address-only instruction variants, and to open the door to new exciting existential representations (such as a refcounted boxed representation for ErrorType).
Swift SVN r25902
If multiple swift files are compiled together, then guessing as to the
file when we emit IR obviously doesn't work. Find the filename when we
generate a function's coverage map and propagate it through SIL.
Swift SVN r25436
These should never happen, but they are happening (rdar://problem/19777115), and not being able to print them when they do occur makes debugging onerous.
Swift SVN r25118
This will have an effect on inlining into thunks.
Currently this flag is set for witness thunks and thunks from function signature optimization.
No change in code generation, yet.
Swift SVN r24998
Local type declarations are saved in the source file during parsing,
now serialized as decls. Some of these may be defined in DeclContexts
which aren't Decls and previously weren't serialized. Create four new
record kinds:
* PatternBindingInitializer
* DefaultArgumentInitializer
* AbstractClosureExpr
* TopLevelCodeDecl
These new records are used to only preserve enough information for
remangling in the debugger, and parental context relationships.
Finally, provide a lookup API in the module to search by mangled name.
With the new remangling API, the debugging lifecycle for local types
should be complete.
The extra LOCAL_CONTEXT record will compressed back down in a
subsequent patch.
Swift SVN r24739
1. Eliminate unused variable warnings.
2. Change field names to match capitalization of the rest of the field names in the file.
3. Change method names to match rest of the file.
4. Change get,set method for a field to match the field type.
Swift SVN r24501
Changing the design of this to maintain more local context
information and changing the lookup API.
This reverts commit 4f2ff1819064dc61c20e31c7c308ae6b3e6615d0.
Swift SVN r24432
rdar://problem/18295292
Locally scoped type declarations were previously not serialized into the
module, which meant that the debugger couldn't reason about the
structure of instances of those types.
Introduce a new mangling for local types:
[file basename MD5][counter][identifier]
This allows the demangle node's data to be used directly for lookup
without having to backtrack in the debugger.
Local decls are now serialized into a LOCAL_TYPE_DECLS table in the
module, which acts as the backing hash table for looking up
[file basename MD5][counter][identifier] -> DeclID mappings.
New tests:
* swift-ide-test mode for testing the demangle/lookup/mangle lifecycle
of a module that contains local decls
* mangling
* module merging with local decls
Swift SVN r24426
storage for arbitrary values.
A buffer doesn't provide any way to identify the type of
value it stores, and so it cannot be copied, moved, or
destroyed independently; thus it's not available as a
first-class type in Swift, which is why I've labelled
it Unsafe. But it does allow an efficient means of
opaquely preserving information between two cooperating
functions. This will be useful for the adjustments I
need to make to materializeForSet to support safe
addressors.
I considered making this a SIL type category instead,
like $@value_buffer T. This is an attractive idea because
it's generally better-typed. The disadvantages are that:
- it would need its own address_to_pointer equivalents and
- alloc_stack doesn't know what type will be stored in
any particular buffer, so there still needs to be
something opaque.
This representation is a bit gross, but it'll do.
Swift SVN r23903
Using the intrinsics is obnoxious because I needed them
to return Builtin.NativeObject?, but there's no reasonable
way to safely generate optional types from Builtins.cpp.
Ugh.
Dave and I also decided that there's no need for
swift_tryPin to allow a null object.
Swift SVN r23824
SILMetadata is the base class with a single enum member (MDKind).
SILBranchNode is the derived class with additional members:
unsigned NumOperands
an array of uint32_t
A static member function SILBranchNode::get is implemented to get or create
SILBranchNode. All SILMetadata created are uniqued and saved in SILModule's
member variable:
llvm::FoldingSet<SILMetadata> Metadatas
Usage of SILMetadta by SILInstruction is captured in SILModule's member variable:
llvm::DenseMap<const SILInstruction *, SILMetadata *> MetadataStore
This is similar to LLVM's Metadata. Another option is to add a SILMetadata* to
SILInstruction. The disadvantage is the waste of space when we don't have PGO on.
This commit also enables parsing and printing of SILMetadata.
We add keyword sil_metadata to define SILMetadata:
sil_metadata !0 = {"branch_weights", 3, 5}
For parsing, we add a map in SILModule
llvm::DenseMap<unsigned, SILMetadata *> NumberedMetadata
that maps from ID to SILMetadata* to help matching usage of "!id" in SILFunction
with definition of "!id" in sil_metadata section.
For printing, we assign IDs to SILMetadata at SILModule scope, we then pass in
an optional argument of
llvm::DenseMap<const SILMetadata *, unsigned> *MetadataMap
to SILFunction::print in order to get the ID of SILMetadata used in
SILInstruction.
Post-commit review will be appreciated.
rdar://18269754
Swift SVN r23713
or pointer depends on another for validity in a
non-obvious way.
Also, document some basic value-propagation rules
based roughly on the optimization rules for ARC.
Swift SVN r23695
Before this patch there was no dependence visible to the optimizer between a
open_existential and the witness_method allowing the optimizer to reorder the
two instruction. The dependence was implicit in the opened archetype but this
is not a concept model by the SIL optimizer.
%2 = open_existential %0 : $*FooProto to $*@opened("...") FooProto
%3 = witness_method $@opened("...") FooProto,
#FooProto.bar!1 : $@cc(...)
%4 = apply %3<...>(%2)
This patch changes the SIL representation such that witness_methods on opened
archetypes take the open_existential (or the producer of the opened existential)
as an operand preventing the optimizer from reordering them.
%2 = open_existential %0 : $*FooProto to $*@opened("...") FooProto
%3 = witness_method $@opened("...") FooProto,
#FooProto.bar!1,
%2 : $*@opened("...") FooProto : $@cc(...)
%4 = apply %3<...>(%2)
rdar://18984526
Swift SVN r23438
Also handles mangling, demangling, printing and parsing.
This is the first patch to use global getter for "let" globals.
rdar://16614767
Swift SVN r23106
This is a type that has ownership of a reference while allowing access to the
spare bits inside the pointer, but which can also safely hold an ObjC tagged pointer
reference (with no spare bits of course). It additionally blesses one
Foundation-coordinated bit with the meaning of "has swift refcounting" in order
to get a faster short-circuit to native refcounting. It supports the following
builtin operations:
- Builtin.castToBridgeObject<T>(ref: T, bits: Builtin.Word) ->
Builtin.BridgeObject
Creates a BridgeObject that contains the bitwise-OR of the bit patterns of
"ref" and "bits". It is the user's responsibility to ensure "bits" doesn't
interfere with the reference identity of the resulting value. In other words,
it is undefined behavior unless:
castReferenceFromBridgeObject(castToBridgeObject(ref, bits)) === ref
This means "bits" must be zero if "ref" is a tagged pointer. If "ref" is a real
object pointer, "bits" must not have any non-spare bits set (unless they're
already set in the pointer value). The native discriminator bit may only be set
if the object is Swift-refcounted.
- Builtin.castReferenceFromBridgeObject<T>(bo: Builtin.BridgeObject) -> T
Extracts the reference from a BridgeObject.
- Builtin.castBitPatternFromBridgeObject(bo: Builtin.BridgeObject) -> Builtin.Word
Presents the bit pattern of a BridgeObject as a Word.
BridgeObject's bits are set up as follows on the various platforms:
i386, armv7:
No ObjC tagged pointers
Swift native refcounting flag bit: 0x0000_0001
Other available spare bits: 0x0000_0002
x86_64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0001
Swift native refcounting flag bit: 0x0000_0000_0000_0002
Other available spare bits: 0x7F00_0000_0000_0004
arm64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0000
Swift native refcounting flag bit: 0x4000_0000_0000_0000
Other available spare bits: 0x3F00_0000_0000_0007
TODO: BridgeObject doesn't present any extra inhabitants. It ought to at least provide null as an extra inhabitant for Optional.
Swift SVN r22880
Modeling builtins as first-class function values doesn't really make sense because there's no real function value to emit, and modeling them this way complicates passes that work with builtins because they have to invent function types for builtin invocations. It's much more straightforward to have a single instruction that references the builtin by ID, along with the type information for the necessary values, type parameters, and results, so add a new "builtin" instruction that directly represents a builtin invocation. NFC yet.
Swift SVN r22690
with user code and that the boilerplate is counted towards the prologue.
<rdar://problem/18563763> Setting a breakpoint on "main" in a Swift program doesn't stop at user code
Swift SVN r22611
layouts. Introduce new SIL instructions to initialize
and open existential metatype values.
Don't actually, y'know, lift any of the restriction on
existential metatypes; just pointlessly burn extra
memory storing them.
Swift SVN r22592
For top level function decls, even if their SILFunctions are emitted, we still
print them. They are needed to satisfy protocol requirements.
Swift SVN r22586
This will be used for parsing sil generated from stdlib. We will ignore
the AST decls and instead import them from the module.
rdar://17979145
Swift SVN r22367