So far we immediately bailed once we detect a cycle in specializations. But it turned out that this prevented efficient code generation for some stdlib functions like compactMap.
With this change we allow specialization of cycles up to a depth of 1 (= still very limited to prevent code size explosion in some corner cases).
The effect of this optimization is tested with the existing benchmark FatCompactMap.
SR-7952, rdar://problem/41005326
The "subclass scope" is meant to represent a connection to a vtable (and how
public something needs to be), for things that end up in class
vtables. Specializations and thunks are mostly internal implementation details
and do not end up there, so subclass scope is not applicable to them. This stops
the thunks and specializations being incorrectly public.
(Note, there are some thunks that _are_ public facing: if a function has its
signature optimized, the original entry point becomes a thunk, and this entry
point is what ends up in vtables etc., so needs to remain around, which means
keeping the same hacks for `private` members of an `open` class.)
Fixes rdar://problem/40738913.
SubstitutionMaps are now just a trivial pointer-sized value, so
pass them by value instead.
I did have to move a couple of functors from Type.h to SubstitutionMap.h
to resolve some issues with forward declarations.
There isn't a clean cut point here, so switch
GenericSpecializationInformation from SubstitutionList to
SubstitutionMap and carry along dual SubstitutionMap/SubstitutionList
representations for a small part of ReabstractionInfo.
This is a property of an instruction and should be a member
function of `SILInstruction` and not a free function in
`DebugUtils`. Discussed with Adrian.
We did this for @in => @owned for all parameters before enabling +0. We decided
to defer this work to after +0 was turned back on.
This also fixes the array_contentof_opt test without making append(contentOf: )
take the container at +1.
rdar://38152291
We already do this for @in parameters. I think it was just never implemented for
@in_guaranteed. The reason I am doing this now is that a bunch of test cases
that tested @in -> trivial. By doing this I get the @in_guaranteed -> trivial
implying those test cases do not need to be updated.
Important Note: We have bad test cases for resilience when dealing with generic specializer. Also add correct test cases + change existing ones
Note2: We only support this for trivial in_guaranteed types
Create helpers in InstructionUtils.h wherever we need a guarantee that the diagnostics cover the same patterns as the verifier. Eventually this will be called from both SILVerifier and the diagnostic pass:
- findAccessedAddressBase
- isPossibleFormalAccessBase
- isPartialApplyOfReabstractionThunk
- findClosureForAppliedArg
- visitAccessedAddress
Add partial_apply verification assert.
This applies the normal "find a closure" logic inside the "find all partial_apply uses" verification. Making the verifier round-trip ensures that we don't have holes in exclusivity enforcement related to this logic.
In case of partial specialization, the replacement type of a substitution can be generic.
I couldn't find a small unit test for this bug fix. But it is tested by compiling the stdlib with the change in Collection.swift.
rdar://problem/36033852
We can just !SILFunction::hasQualifiedOwnership(). Plus as Andy pointed out,
even ignoring the functional aspects, having APIs with names this close can
create confusion.
Adds a combined API to output both debug message and optimization remarks.
The previously added test partial_specialization_debug.sil ensures that it's an
NFC for debug output.
For now these are underscored attributes, i.e. compiler internal attributes:
@_optimize(speed)
@_optimize(size)
@_optimize(none)
Those attributes override the command-line specified optimization mode for a specific function.
The @_optimize(none) attribute is equivalent to the already existing @_semantics("optimize.sil.never") attribute
This commit is mostly refactoring.
*) Introduce a new OptimizationMode enum and use that in SILOptions and IRGenOptions
*) Allow the optimization mode also be specified for specific SILFunctions. This is not used in this commit yet and thus still a NFC.
Also, fixes a minor bug: we didn’t run mandatory IRGen passes for functions with @_semantics("optimize.sil.never")
Now that the GenericSignatureBuilder is no longer sensitive to the input
module, stop uniquing the canonical GSBs based on that module. The main
win here is when deserializing a generic environment: we would end up
creating a canonical GSB in the module we deserialized and another
canonical GSB in the module in which it is used.
Implement a module-agnostic conformance lookup operation within the GSB
itself, so it does not need to be supplied by the code constructing the
generic signature builder. This makes the generic signature builder
(closer to) being module-agnostic.
Pre-specializations need some special handling when it comes to the Serialized attribute. Their bodies should not be SIL serialized. Instead, only their declarations should be serialized.
And since their bodies are not serialized and cannot be imported by the client code, it is OK if pre-specializations reference non-fragile functions inside their bodies. Due to the same reason, it is fine if pre-specializations are referenced from fragile functions, even though these pre-specializations are not fragile in a usual sense.
Once we compute a generic signature from a generic signature builder,
all queries involving that generic signature will go through a separate
(canonicalized) builder, and the original builder can no longer be used.
The canonicalization process then creates a new, effectively identical
generic signature builder. How silly.
Once we’ve computed the signature of a generic signature builder, “register”
it with the ASTContext, allowing us to move the existing generic signature
builder into place as the canonical generic signature builder. The builder
requires minimal patching but is otherwise fully usable.
Thanks to Slava Pestov for the idea!
Funnel all places where we create a generic signature builder to compute
the generic signature through a single entry point in the GSB
(`computeGenericSignature()`), and make `finalize` and `getGenericSignature`
private so no new uses crop up.
Tighten up the signature of `computeGenericSignature()` so it only works on
GSB rvalues, and ensure that all clients consider the GSB dead after that
point by clearing out the internal representation of the GSB.
Funnel all places where we create a generic signature builder to compute
the generic signature through a single entry point in the GSB
(`computeGenericSignature()`), and make `finalize` and `getGenericSignature`
private so no new uses crop up.
Tighten up the signature of `computeGenericSignature()` so it only works on
GSB rvalues, and ensure that all clients consider the GSB dead after that
point by clearing out the internal representation of the GSB.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
Once we compute a generic signature from a generic signature builder,
all queries involving that generic signature will go through a separate
(canonicalized) builder, and the original builder can no longer be used.
The canonicalization process then creates a new, effectively identical
generic signature builder. How silly.
Once we’ve computed the signature of a generic signature builder, “register”
it with the ASTContext, allowing us to move the existing generic signature
builder into place as the canonical generic signature builder. The builder
requires minimal patching but is otherwise fully usable.
Thanks to Slava Pestov for the idea!
Funnel all places where we create a generic signature builder to compute
the generic signature through a single entry point in the GSB
(`computeGenericSignature()`), and make `finalize` and `getGenericSignature`
private so no new uses crop up.
Tighten up the signature of `computeGenericSignature()` so it only works on
GSB rvalues, and ensure that all clients consider the GSB dead after that
point by clearing out the internal representation of the GSB.
The etymology of these terms isn't about race, but "black" = "blocked"
and "white" = "allowed" isn't really a good look these days. In most
cases we weren't using these terms particularly precisely anyway, so
the rephrasing is actually an improvement.