* Check if the address in question is even visible from outside the function
* Return the memory effects of the called function
Also, add a new API `Instruction.memoryEffects`, which is internally used by `mayReadFromMemory` et al.
The `isEscaping` function is called a lot from ARCSequenceOpt and ReleaseHoisting.
To avoid quadratic complexity for large functions, limit the amount of work what the EscapeUtils are allowed to to.
This keeps the complexity linear.
The arbitrary limit is good enough for almost all functions.
It lets the EscapeUtils do several hundred up/down walks which is much more than needed in most cases.
Fixes a compiler hang
https://github.com/apple/swift/issues/63846
rdar://105795976
* split the `PassContext` into multiple protocols and structs: `Context`, `MutatingContext`, `FunctionPassContext` and `SimplifyContext`
* change how instruction passes work: implement the `simplify` function in conformance to `SILCombineSimplifyable`
* add a mechanism to add a callback for inserted instructions
Functions "are deinit barriers" (more pedantically, applies of functions
are deinit barriers) if any of their instructions are deinit barriers.
During side-effect analysis, when walking a function's instructions for
other global effects, also check for the deinit-barrier effect. If an
instruction is found to be a deinit barrier, mark the function's global
effects accordingly.
Add SILFunction::isDeinitBarrier to conveniently access the effects
computed during ComputeSideEffects.
Update the isBarrierApply predicate to iterate over the list of callees,
if complete, to check whether any is a deinit barrier. If none is, then
the apply is not a deinit barrier.
Added new C++-to-Swift callback for isDeinitBarrier.
And pass it CalleeAnalysis so it can depend on function effects. For
now, the argument is ignored. And, all callers just pass nullptr.
Promoted to API the mayAccessPointer component predicate of
isDeinitBarrier which needs to remain in C++. That predicate will also
depends on function effects. For that reason, it too is now passed a
BasicCalleeAnalysis and is moved into SILOptimizer.
Also, added more conservative versions of isDeinitBarrier and
maySynchronize which will never consider side-effects.
`EscapeInfo` now conforms to the generic protocols defined in `WalkUtils`.
This simplifies the implementation a bit, since trivial instructions are handled
by `WalkUtils` and `EscapeInfo` only has to handle a subset of instructions
inherent to escape information.
Passes using `EscapeInfo` are updated accordingly to become visitors that
customize the `EscapeInfo` walk.
* C++: add a function `getDestructors(SILType type, bool isExactType)’: if the type is a final class or `isExactType` is true, then return the one and only destructor of that class.
* swift: add `getDestructor(ofExactType type: Type)` and `getIncompleteCallees`
* swift: remove `getDestructor` from the PassContext. The API of the `calleeAnalysis` can be used instead.
Improve block/instruction lists and similar collections
* pretty print collections in the form “[a, b, c]”
* also do this for lazy sequences
* define a custom Mirror
* in a collection, only print the name of blocks, functions and globals (instead of the full object)
* replace `BasicBlock.reverseInstructions` with `BasicBlock.instructions.reversed()` - in an efficient way