Introduces a concept of a dependency scanning action context hash, which is used to select an instance of a global dependency scanning cache which gets re-used across dependency scanning actions.
The pass to decide which functions should get stack protection was added in https://github.com/apple/swift/pull/60933, but was disabled by default.
This PR enables stack protection by default, but not the possibility to move arguments into temporaries - to keep the risk low.
Moving to temporaries can be enabled with the new frontend option `-enable-move-inout-stack-protector`.
rdar://93677524
So far, the swift-frontend decided by itself if CMO can be enabled. This caused problems when used with an old driver, which doesn't consider CMO.
Now, the driver decides when to use default CMO by passing this flag to swift-frontend.
If we are emitting a TBD file, the TBD file only contains public symbols of this module.
But not public symbols of imported modules which are statically linked to the current binary.
This prevents referencing public symbols from other modules which could (potentially) linked statically.
Unfortunately there is no way to find out if another module is linked statically or dynamically, so we have to be conservative.
Fixes an unresolved-symbol linker error.
rdar://89364148
The reason why I am doing this is that we are going to be enabling lexical
lifetimes early in the pipeline so that I can use it for the move operator's
diagnostics.
To make it easy for passes to know whether or not they should support lexical
lifetimes, I included a query on SILOptions called
supportsLexicalLifetimes. This will return true if the pass (given the passed in
option) should insert the lexical lifetime flag. This ensures that passes that
run in both pipelines (e.x.: AllocBoxToStack) know whether or not to set the
lexical lifetime flag without having to locally reason about it.
This is just chopping off layers of a larger patch I am upstreaming.
NOTE: This is technically NFC since it leaves the default alone of not inserting
lexical lifetimes at all.
Leaks checking is not thread safe and e.g. lldb creates multiple SILModules in multiple threads, which would result in false alarms.
Ideally we would make it thread safe, e.g. by putting the instruction counters in the SILModule, but this would be a big effort and it's not worth doing it. Leaks checking in the frontend's and SILOpt's SILModule (not including SILModules created for module interface building) is a good enough test.
rdar://84688015
Previously, the flag was a LangOptioins. That didn't make much sense because
this isn't really a user-facing behavior. More importantly, as a member
of that type type it couldn't be accessed when setting up pass
pipelines. Here, the flag is moved to SILOptions.
- If any of the `-g<kind>` flag is given -- except `-gnone`, debug
info will be printed into every generated SIL files.
- The `-gsil` is deprecated in favor of `-sil-based-debuginfo`. The
SILDebugInfoGenerator Pass now generates intermediate SIL file with
name "<output file>.sil_dbg_<n>.sil". Other functionalities of that
Pass remain the same.
Introduce flags `-enable-actor-data-race-checks` and
`-disable-actor-data-race-checks` to enable/disable emission of code
that checks that we are on the correct actor. Default to `false` for
now but make it easy to enable in the future.
-enable-copy-propagation: enables whatever form of copy propagation
the current pipeline runs (mandatory-copy-propagation at -Onone,
regular copy-propation at -O).
-disable-copy-propagation: similarly disables any form of copy
propagation in the current pipelien.
There is some sort of ASAN issue that this exposes on Linux, so I am going to do
this on Darwin and then debug the Linux issue using ASAN over the weekend/next
week.
-enable-subst-sil-function-types-for-function-values
-enable-large-loadable-types
These defaulted to on, and there were no corresponding flags for
turning them off, so the flags had no effect.
Adds a new flag "-experimental-skip-all-function-bodies" that skips
typechecking and SIL generation for all function bodies (where
possible).
`didSet` functions are still typechecked and have SIL generated as their
body is checked for the `oldValue` parameter, but are not serialized.
Parsing will generally be skipped as well, but this isn't necessarily
the case since other flags (eg. "-verify-syntax-tree") may force delayed
parsing off.
Specifically the option: -sil-stop-optzns-before-lowering-ownership. This makes
it possible to write end-to-end tests on OSSA passes. Before one would have to
pattern match after ownership was lowered, losing the ability to do finegrained
FileCheck pattern matching on ossa itself.
Its use in deserialization can be replaced with a
more general check for whether we're deserializing
into the same module. Its use in the SILVerifier
is subsumed by the check for whether the SILModule
is canonical, which it isn't during merge-modules.
This allows the usage of the whole remark infrastructure developed in
LLVM, which includes a new binary format, metadata in object files, etc.
This gets rid of the YAMLTraits-based remark serialization and does the
plumbing for hooking to LLVM's main remark streamer.
For more about the idea behind LLVM's main remark streamer, see the
docs/Remarks.rst changes in https://reviews.llvm.org/D73676.
The flags are now:
* -save-optimization-record: enable remarks, defaults to YAML
* -save-optimization-record=<format>: enable remarks, use <format> for
serialization
* -save-optimization-record-passes <regex>: only serialize passes that
match <regex>.
The YAMLTraits in swift had a different `flow` setting for the debug
location, resulting in some test changes.
This is a first version of cross module optimization (CMO).
The basic idea for CMO is to use the existing library evolution compiler features, but in an automated way. A new SIL module pass "annotates" functions and types with @inlinable and @usableFromInline. This results in functions being serialized into the swiftmodule file and thus available for optimizations in client modules.
The annotation is done with a worklist-algorithm, starting from public functions and continuing with entities which are used from already selected functions. A heuristic performs a preselection on which functions to consider - currently just generic functions are selected.
The serializer then writes annotated functions (including function bodies) into the swiftmodule file of the compiled module. Client modules are able to de-serialize such functions from their imported modules and use them for optimiations, like generic specialization.
The optimization is gated by a new compiler option -cross-module-optimization (also available in the swift driver).
By default this option is off. Without turning the option on, this change is (almost) a NFC.
rdar://problem/22591518
This flag, currently staged in as `-experimental-skip-non-inlinable-function-bodies`, will cause the typechecker to skip typechecking bodies of functions that will not be serialized in the resulting `.swiftmodule`. This patch also includes a SIL verifier that ensures that we don’t accidentally include a body that we should have skipped.
There is still some work left to make sure the emitted .swiftmodule is exactly the same as what’s emitted without the flag, which is what’s causing the benchmark noise above. I’ll be committing follow-up patches to address those, but for now I’m going to land the implementation behind a flag.