Attribute @_silgen_name is today only allowed to be used on functions, this change allows usage on globals as well. The motivation for that is to be able to "forward declare" globals just like it's today possible to do with functions (for the cases where it's not practical or convenient to use a bridging header).
Separately, this change also adds a @_silgen_name(raw: ...) syntax, which simply avoids mangling the name (by using the \01 name prefix that LLVM uses). The motivation for that is to be able to reference the "magic Darwin linker symbols" that can be used to look up section bounds (in the current dylib/module) -- those symbols don't use the underscore prefix in their mangled names.
ClangImporter can import some methods as throwing that `@objc` cannot generate. For instance, an imported Objective-C method with an error out parameter in an unconventional position can still be imported as throwing no matter its selector, but `@objc` can only generate an error out parameter in an unconventional position if the matching selector part consists of the word `error` or (for the first part) ends with `Error`. Detect and diagnose these situations.
Note that the tests do not cover all of the new diagnostics because some of these conditions (like the `Void` parameter) cause selector mismatches and others (like the owned error parameter) are representable in the compiler but cannot currently be imported. I have chosen to add these diagnostics anyway in case there is a corner case that I haven’t discovered.
Fixes rdar://110100071.
The reason why I am doing this is that this was not part of the original
evolution proposal (it was called an extension) and after some discussion it was
realized that partial consumption would benefit from discussion on the forums.
rdar://111353459
Unlike `swift-frontend -scan-dependencies` option, when dependency
scanner is used as a library by swift driver, the SwiftScanningService
is shared for multiple driver invocations. It can't keep states (like
common file dependencies) that can change from one invocation to
another.
Instead, the clang/SDK file dependencies are computed from each driver
invocations to avoid out-of-date information when scanning service is
reused.
The test case for a shared Service will be added to swift-driver repo
since there is no tool to test it within swift compiler.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
Isolation checking for calls had two separate implementation places:
one that looked at the declaration being called (for member
declarations) and one that worked on the actual call expression. Unify
on the latter implementation, which is more general and has access to
the specific call arguments. Improve diagnostics here somewher so we
don't regress in that area.
This refactoring shouldn't change the actual semantics, but it makes
upcoming semantic changes easier.
* Move collapse(expansions:for:attachedTo:) to SwiftSyntaxMacroExpansion
* SwiftSyntaxMacroExpansion.expandAttachedMacro() now perform collapsing
* SwiftSyntaxMacroExpansion.expandAttachedMacroWithoutCollapsing()
to keep old behavior
* IPC request 'getCapability' now sends the host protocol version
* Unified IPC response 'macroExpansionResult' that returns single string
for both 'expandFreestandingMacro' and 'expandAttachedMacro'
* Compiler accepts old 'expandFreestandingMacroResult' and
'expandAttachedMacroResult' to keep compatibility
* Plugins check the compiler's protcol version to see if it suppports
'macroExpansionResult', and fall back to old behavior if necessary
When you have a type that's ambiguous because it's defined in 2 imported
modules, but you don't have to disambiguate by using the module name,
previously no index references were produced. Now most are for the
common case, but notably nested type constructors and generics still
aren't emitted, partially because of https://github.com/apple/swift/issues/65726
Fixes: https://github.com/apple/swift/issues/64598
One can still in resilient frameworks have noncopyable frozen types.
This means that one cannot make a noncopyable:
1. Full resilient public type.
2. @usableFromInline type.
NOTE: One can still use a frozen noncopyable type as a usableFromInline class
field. I validated in the attached tests that we get the correct code
generation.
I also eliminated a small bug in TypeCheckDeclPrimary where we weren't using a
requestified attr check and instead were checking directly.
rdar://111125845
previously I was allowing these because I thought there was
some representational difference if the enum is raw. it
turns out that a raw enum is only useful if you synthesize
conformance to RawRepresentable. since I disabled that
synthesis it's kind of silly to still allow the raw type
to be written at all.
rdar://110539937
`std::set::insert` isn't exposed into Swift, because it returns an instance of an unsafe type.
This change adds a Swift overload of `insert` for `std::set` and `std::unordered_set` that has the return type identical to `Swift.Set.insert`: a tuple of `(inserted: Bool, memberAfterInsert: Element)`.
rdar://111036912
This code used to crash the compiler:
var s = std.string("hi")
s.append("foo")
`append` in this case resolves to a templated C++ method that accepts `std::string_view`, while we tried passing a Swift String to it as a parameter.
rdar://107018724
Iterating all options and potential file system access is not great for
every plugin lookup request. Instead, lazily create a single lookup table
keyed by module name.
this was staged in as a warning initially but it was intended to be
an error if it is not written so that we can move to a world where
these pattern matches are done as a borrowing operation instead.
rdar://110908714