Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
* Refactoring: replace "Destination" and the ownership qualifier by a single "Mode". This represents much better the mode how the instruction is to be lowered. NFC
* Make assign_by_wrapper printable and parseable.
* Fix lowering of the assign modes for indirect results of the init-closure: The indirect result was initialized and not assigned to. The fix is to insert a destroy_addr before calling the init closure. This fixes a memory lifetime error and/or a memory leak. Found by inspection.
* Fix an iterator-invalidation crash in RawSILInstLowering
* Add tests for lowering assign_by_wrapper.
cloning
forwardingOwnershipKind can differ from the operand's ownershipKind. We
need to copy forwardingOwnershipKind while cloning these instructions.
Also print the forwarding ownership kind when it differs from its
operand's ownershipKind
This is a follow up of #36063
The forwardingOwnershipKind need not be the same as operandOwnershipKind
after optimizations like SILCombine. While cloning, make sure to
propagate this correctly, if not this results in unnecessary ownership
verifier errors.
If we know that we have a FunctionRefInst (and not another variant of FunctionRefBaseInst), we know that getting the referenced function will not be null (in contrast to FunctionRefBaseInst::getReferencedFunctionOrNull).
NFC
Interestingly this problem can only occur if one invokes
MarkUninitializedInst::getKind() directly. Once our instruction is just a
SILInstruction, we call the appropriate method so we didn't notice it.
I used Xcode's refactoring functionality to find all of the invocation
locations.
This makes it easier to understand conceptually why a ValueOwnershipKind with
Any ownership is invalid and also allowed me to explicitly document the lattice
that relates ownership constraints/value ownership kinds.
This instructions ensures that all instructions, which need to run on the specified executor actually run on that executor.
For details see the description in SIL.rst.
`get_async_continuation[_addr]` begins a suspend operation by accessing the continuation value that can resume
the task, which can then be used in a callback or event handler before executing `await_async_continuation` to
suspend the task.
Today unchecked_bitwise_cast returns a value with ObjCUnowned ownership. This is
important to do since the instruction can truncate memory meaning we want to
treat it as a new object that must be copied before use.
This means that in OSSA we do not have a purely ossa forwarding unchecked
layout-compatible assuming cast. This role is filled by unchecked_value_cast.
The ``base_addr_for_offset`` instruction creates a base address for offset calculations.
The result can be used by address projections, like ``struct_element_addr``, which themselves return the offset of the projected fields.
IR generation simply creates a null pointer for ``base_addr_for_offset``.
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
Make `SILCloner:visitAllocStack` correctly propagate the `[dynamic_lifetime]`
attribute.
Resolves SR-12886: differentiation transform error related to the `VJPEmitter`
subclass of `SILCloner`.
* a new [immutable] attribute on ref_element_addr and ref_tail_addr
* new instructions: begin_cow_mutation and end_cow_mutation
These new instructions are intended to be used for the stdlib's COW containers, e.g. Array.
They allow more aggressive optimizations, especially for Array.
`VJPEmitter` is a cloner that emits VJP functions. It implements reverse-mode
automatic differentiation, along with `PullbackEmitter`.
`VJPEmitter` clones an original function, replacing function applications with
VJP function applications. In VJP functions, each basic block takes a pullback
struct (containing callee pullbacks) and produces a predecessor enum: these data
structures are consumed by pullback functions.
Add `linear_function` and `linear_function_extract` instructions.
`linear_function` creates a `@differentiable(linear)` function-typed value from
an original function operand and a transpose function operand (optional).
`linear_function_extract` extracts either the original or transpose function
value from a `@differentiable(linear)` function.
Resolves TF-1142 and TF-1143.
Add `differentiable_function` and `differentiable_function_extract`
instructions.
`differentiable_function` creates a `@differentiable` function-typed
value from an original function operand and derivative function operands
(optional).
`differentiable_function_extract` extracts either the original or
derivative function value from a `@differentiable` function.
The differentiation transform canonicalizes `differentiable_function`
instructions, filling in derivative function operands if missing.
Resolves TF-1139 and TF-1140.
* Simplified the logic for creating static initializers and constant folding for global variables: instead of creating a getter function, directly inline the constant value into the use-sites.
* Wired up the constant folder in GlobalOpt, so that a chains for global variables can be propagated, e.g.
let a = 1
let b = a + 10
let c = b + 5
* Fixed a problem where we didn't create a static initializer if a global is not used in the same module. E.g. a public let variable.
* Simplified the code in general.
rdar://problem/31515927
The `differentiability_witness_function` instruction looks up a
differentiability witness function (JVP, VJP, or transpose) for a referenced
function via SIL differentiability witnesses.
Add round-trip parsing/serialization and IRGen tests.
Notes:
- Differentiability witnesses for linear functions require more support.
`differentiability_witness_function [transpose]` instructions do not yet
have IRGen.
- Nothing currently generates `differentiability_witness_function` instructions.
The differentiation transform does, but it hasn't been upstreamed yet.
Resolves TF-1141.
The original design was to make it so that end_borrow tied at the use level its
original/borrowed value. So we would have:
```
%borrowedVal = begin_borrow %original
...
end_borrow %borrowedVal from %original
```
In the end we decided not to use that design and instead just use:
```
%borrowedVal = begin_borrow %original
...
end_borrow %borrowedVal
```
In order to enable that transition, I left the old API for end_borrow that took
both original and borrowedVal and reimplemented it on top of the new API that
just took the borrowedVal (i.e. the original was just a dead arg).
Now given where we are in the development, it makes sense to get rid of that
transition API and move to just use the new API.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
While tightening the requirements of the debug info generator in
IRGenSIL I noticed that SILCloner didn't correctly transfer variable
debug info on alloc_box and alloc_stack instructions. In order to make
these mistakes easier to find I added an assertion to SILBuilder and
fixed all issues uncovered by that assertion, too.
The result is a moderate increase in debug info coverage in optimized code.
On stdlib/public/core/OSX/x86_64/Swift.o "variables with location"
increases from 60134 to 60299.
This mostly requires changing various entry points to pass around a
TypeConverter instead of a SILModule. I've left behind entry points
that take a SILModule for a few methods like SILType::subst() to
avoid creating even more churn.
This provides a singular instruction for convert an unmanaged value to a ref,
then strong_retain it. I expanded the definition of UNCHECKED_REF_STORAGE to
include these copy like instructions. This instruction is valid in all SIL.
The reason why I am adding this instruction is that currently when we emit an
access to an unowned (unsafe) ivar, we use an unmanaged_to_ref and a strong
retain. This can look to the optimizer like a strong retain that can potentially
be optimized. By combining the two together into a new instruction, we can avoid
this potential problem since the pattern matching will break.
With the advent of dynamic_function_ref the actual callee of such a ref
my vary. Optimizations should not assume to know the content of a
function referenced by dynamic_function_ref. Introduce
getReferencedFunctionOrNull which will return null for such function
refs. And getInitialReferencedFunction to return the referenced
function.
Use as appropriate.
rdar://50959798
The ownership kind is Any for trivial types, or Owned otherwise, but
whether a type is trivial or not will soon depend on the resilience
expansion.
This means that a SILModule now uniques two SILUndefs per type instead
of one, and serialization uses two distinct sentinel IDs for this
purpose as well.
For now, the resilience expansion is not actually used here, so this
change is NFC, other than changing the module format.