Sometimes when building the SwiftCompilerSources with a host compiler, linking fails with unresolved symbols for DenseMap and unique_ptr destroys.
This looks like a problem with C++ interop: the compiler thinks that destructors for some Analysis classes are materialized in the SwiftCompilerSources, but they are not.
Explicitly defining those destructors fixes the problem.
If the pattern doesn't have any pack parameters in it anymore,
we need to recover the substituted count type from the original
count type.
Fixes rdar://problem/112065340.
Both of these can cause us to insert destroy_addr in the wrong locations.
1. The first causes us to insert destroys for parts of values that are not
actually on the boundary since we didn't use our mask and instead used all of
the liveness information.
2. We were merging successor information using '&=' instead of '|=. This caused
a problem if we had multiple regions for the same successor. In such a case, we
would not have anything in common for the regions causing us to not have any
bits in common, resulting in us inserting too many destroy_addr instead of
skipping as we were supposed to.
rdar://112434492
Since dead-store-elimination is now more accurate, it's important that the `bind_memory` instructions are also defined to _read_ memory.
Otherwise they are not considered as barriers for dead-store-elimination.
Fixes a miscompile.
rdar://112150142
Before this change, if a global variable is required to be statically initialized (e.g. due to @_section attribute), we don't allow its type to be a struct, only a scalar type works. This change improves on that by teaching MandatoryPerformanceOptimizations pass to inline struct initializer calls into initializer of globals, as long as they are simple enough so that we can be sure that we don't trigger recursive/infinite inlining.
This is code that I am fairly familiar with but it still took a day of
investigation to figure out how it is supposed to be used now in the
presence of bridging.
This primarily involved ruling out the possibity that the mid-level
Swift APIs could at some point call into the lower-level C++ APIs.
The biggest problem was that AliasAnalysis::getMemoryBehaviorOfInst()
was declared as a public interface, and it's name indicates that it
computes the memory behavior. But it is just a wrapper around a Swift
API and never actually calls into any of the C++ logic that is
responsible for computing memory behavior!
This is similar to our ban on partial consuming a value for this release. The
reason for this is that, one can achieve a similar affect as partial consumption
via a consumption of the entire value and then a partial reinitialization. Example:
```swift
struct X : ~Copyable { var i = 5, var i2 = Klass() }
var x = X()
_ = consume x
x.i = 5
```
in the case above, we now have a value that is in a partially initialized state.
We still allow for move only types to have their fields initialized as long as
there is an intervening init.
rdar://111498740
Renamed UnitTest to FunctionTest.
FunctionTests are now instantiated once as global objects--with their
names and the code they are to run--at which time they are stored by
name in a global registry.
Moved the types to the SIL library.
Together, these changes enable defining unit tests in the source file
containing the code to be tested.
APIs on ForwardingInstruction should be written as static taking in
a SILInstruction as a parameter making it awkward.
Introduce a ForwardingOperation wrapper type and move the apis from the
old "mixin" class to the wrapper type.
Add new api getForwardedOperands()
The `bare` attribute indicates that the object header is not used throughout the lifetime of the value.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
The `bare` attribute indicates that the object header is not used throughout the lifetime of the object.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
SelectEnumInstBase will be templated in the next commit.
Instead of using templated SelectEnumInstBase everywhere, introduce
a new wrapper type SelectEnumOperation.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.