This commit adds a new frontend flag that applies debug path prefixing to the
paths serialized in swiftmodule files. This makes it possible to use swiftmodule
files that have been built on different machines by applying the inverse map
when debugging, in a similar fashion to source path prefixing.
The inverse mapping in LLDB will be handled in a follow up PR.
Second pass at #39138
Tests updated to handle windows path separators.
This reverts commit f5aa95b381.
* Fix unnecessary one-time recompile of stdlib with -enable-ossa-flag
This includes a bit in the module format to represent if the module was
compiled with -enable-ossa-modules flag. When compiling a client module
with -enable-ossa-modules flag, all dependent modules are checked for this bit,
if not on, recompilation is triggered with -enable-ossa-modules.
* Updated tests
This enables optimizing / dead-stripping of witness methods across modules at
LTO time.
- Under -internalize-at-link, restrict visibility of wtables to linkage unit.
- Emit thunks for cross-module wcalls when WME is enabled.
- Use thunks for wcalls across modules when WME is enabled.
- Adjust TBDGen to account for witness method thunks when WME is enabled.
- Add an IR test to check that thunks are used when doing cross-module calls.
- Add an end-to-end test case for cross-module WME.
[NFC] Add a module alias map and a lookup func to ASTContext.
Add a getter for the actual module name in ModuleDecl if a module alias is used.
rdar://83682112
This commit adds the `-prefix-serialized-debugging-options` flag,
which is used to apply the debug prefix map to serialized debugging
options embedded in the swiftmodule files.
A new LLVM IR affordance that allows expressing conditions under which globals
can be removed/dropped (even when marked with @llvm.used) is being discussed at:
- <https://reviews.llvm.org/D104496>
- <https://lists.llvm.org/pipermail/llvm-dev/2021-September/152656.html>
This is a preliminary implementation that marks runtime lookup records (namely
protocol records, type descriptors records and protocol conformance records)
with the !llvm.used.conditional descriptors. That allows link-time / LTO-time
removal of these records (by GlobalDCE) based on whether they're actually used
within the linkage unit. Effectively, this allows libraries that have a limited
and known set of clients, to be optimized against the client at LTO time, and
significantly reduce the code size of that library.
Parts of the implementation:
- New -conditional-runtime-records frontend flag to enable using !llvm.used.conditional
- IRGen code that emits these records can now emit these either as a single contiguous
array (asContiguousArray = true, the old way), which is used for JIT mode, or
as indivial globals (asContiguousArray = false), which is necessary for the
!llvm.used.conditional stripping to work.
- When records are emitted as individual globals, they have new names of
"\01l_protocol_" + mangled name of the protocol descriptor, and similarly for
other records.
- Fixed existing tests to account for individual records instead of a single array
- Added an IR level test, and an end-to-end execution test to demonstrate that
the !llvm.used.conditional-based stripping actually works.
"add inits to toplevel" and "call pattern heuristics" are only used in
code completion. Move them from LangOptions to CodeCompletionContext so
that they don't affect compiler arguments.
Added ForceStructTypeLayouts. When enabled, IRGen will lower structs using the
aligned group of TypeLayout rather than using TypeInfos. This potentially leads
to a size increase as TypeInfos currently produce better code than the
TypeLayout route.
- Under -internalize-at-link, stop unconditionally marking all globals as used.
- Under -internalize-at-link, restrict visibility of vtables to linkage unit.
- Emit virtual method thunks for cross-module vcalls when VFE is enabled.
- Use thunks for vcalls across modules when VFE is enabled.
- Adjust TBDGen to account for virtual method thunks when VFE is enabled.
- Add an end-to-end test case for cross-module VFE.
- Witness method calls are done via @llvm.type.checked.load instrinsic call with a type identifier
- Type id of a witness method is the requirement's mangled name
- Witness tables get !type markers that list offsets and type ids of all methods in the wtable
- Added -enable-llvm-wme to enable Witness Method Elimination
- Added IR test and execution test
When we fall back to loading an arm64e module interface during an arm64 build, we want to compile it for the arm64 target so that it is fully compatible with the module that will load it, even though the flags in the file specify the arm64e target. Rewrite the sub-invocation's TargetTriple property in this specific situation. If the two targets differ by more than just the sub-architecture, we will continue to respect the -target flag in the file.
Fixes <rdar://83056545>.
control swift extended frame information emission
On linux we default to disable the extended frame info (since the system
libraries don't support it).
On darwin the default is to automatically choose based on the deployment target.
The Concurrency library explicitly forces extended frame information and the
back deployment library explicitly disables it.
Changed the frontend flag to -enable-experimental-lexical-lifetimes from
-enable-experimental-defined-lifetimes.
Changed the attribute on begin_borrow from [defined] to [lexical].
- Virtual calls are done via a @llvm.type.checked.load instrinsic call with a type identifier
- Type identifier of a vfunc is the base method's mangling
- Type descriptors and class metadata get !type markers that list offsets and type identifiers of all vfuncs
- The -enable-llvm-vfe frontend flag enables VFE
- Two added tests verify the behavior on IR and by executing a program
Serialize the canonical name of the SDK used when building a swiftmodule
file and use it to ensure that the swiftmodule file is loaded only with
the same SDK. The SDK name must be passed down from the frontend.
This will report unsupported configurations like:
- Installing roots between incompatible SDKs without deleting the
swiftmodule files.
- Having multiple targets in the same project using different SDKs.
- Loading a swiftmodule created with a newer SDK (and stdlib) with an
older SDK.
All of these lead to hard to investigate deserialization failures and
this change should detect them early, before reaching a deserialization
failure.
rdar://78048939