Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
* [IRGen+Runtime] Layout string getEnumTag for fixed size enums subset
getEnumTag impl for layout strings of fixed sized enums that use a function to fetch the enum tag
* Fix potential UB in IRGen
* [IRGen] Fix layout string generation for pre-specialized metadata
rdar://108012057
Pre-specialized metadata has to be specifically handled by using the bound generic type instead of the unbound one. All the necessary information is already being passed down as BoundGenericTypeCharacteristics, we just need to apply them when present.
* Add tests and a few fixes
* Fixes after rebase
* Attempt to fix Windows linker issue in test
It shouldn't normally be possible to invoke them, but if someone does
dynamically grab metadata for a noncopyable type and try to use it to copy
a value that can't be copied, they must be stopped.
* [IRGen] Add layout strings for generic and resilient types
rdar://105837048
* Add some corner cases
* Add flag to enable generic instantiation and some fixes
* Fix resilient types
* Fix metadata accessor function pointers in combined layout strings
And use the new bit to ensure we don't try to lower move-only types
with common layout value witness surrogates. Take a bit in the runtime
value witness flags to represent types that are not copyable.
Noncopyable types aren't really "POD", but the bit is still useful to track
whether a noncopyable type has a no-op destroy operation, so rename the
existing bit to be more specific within IRGen's implementation.
Don't rename it in the runtime or Builtin names yet, since doing so will
require a naming transition for compatibility.
rdar://105837040
* WIP: Store layout string in type metadata
* WIP: More cases working
* WIP: Layout strings almost working
* Add layout string pointer to struct metadata
* Fetch bytecode layout strings from metadata in runtime
* More efficient bytecode layout
* Add support for interpreted generics in layout strings
* Layout string instantiation, take and more
* Remove duplicate information from layout strings
* Include size of previous object in next objects offset to reduce number of increments at runtime
* Add support for existentials
* Build type layout strings with StructBuilder to support target sizes and metadata pointers
* Add support for resilient types
* Properly cache layout strings in compiler
* Generic resilient types working
* Non-generic resilient types working
* Instantiate resilient type in layout when possible
* Fix a few issues around alignment and signing
* Disable generics, fix static alignment
* Fix MultiPayloadEnum size when no extra tag is necessary
* Fixes after rebase
* Cleanup
* Fix most tests
* Fix objcImplementattion and non-Darwin builds
* Fix BytecodeLayouts on non-Darwin
* Fix Linux build
* Fix sizes in linux tests
* Sign layout string pointers
* Use nullptr instead of debug value
* Introduce TypeLayout Strings
Layout strings encode the structure of a type into a byte string that can be
interpreted by a runtime function to achieve a destroy or copy. Rather than
generating ir for a destroy/assignWithCopy/etc, we instead generate a layout
string which encodes enough information for a called runtime function to
perform the operation for us. Value witness functions tend to be quite large,
so this allows us to replace them with a single call instead. This gives us the
option of making a codesize/runtime cost trade off.
* Added Attribute @_GenerateLayoutBytecode
This marks a type definition that should use generic bytecode based
value witnesses rather than generating the standard suite of
value witness functions. This should reduce the codesize of the binary
for a runtime interpretation of the bytecode cost.
* Statically link in implementation
Summary:
This creates a library to store the runtime functions in to deploy to
runtimes that do not implement bytecode layouts. Right now, that is
everything. Once these are added to the runtime itself, it can be used
to deploy to old runtimes.
* Implement Destroy at Runtime Using LayoutStrings
If GenerateLayoutBytecode is enabled, Create a layout string and use it
to call swift_generic_destroy
* Add Resilient type and Archetype Support for BytecodeLayouts
Add Resilient type and Archetype Support to Bytecode Layouts
* Implement Bytecode assign/init with copy/take
Implements swift_generic_initialize and swift_generic_assign to allow copying
types using bytecode based witnesses.
* Add EnumTag Support
* Add IRGen Bytecode Layouts Test
Added a test to ensure layouts are correct and getting generated
* Implement BytecodeLayouts ObjC retain/release
* Fix for Non static alignments in aligned groups
* Disable MultiEnums
MultiEnums currently have some correctness issues with non fixed multienum
types. Disabling them for now then going to attempt a correct implementation in
a follow up patch
* Fixes after merge
* More fixes
* Possible fix for native unowned
* Use TypeInfoeBasedTypeLayoutEntry for all scalars when ForceStructTypeLayouts is disabled
* Remove @_GenerateBytecodeLayout attribute
* Fix typelayout_based_value_witness.swift
Co-authored-by: Gwen Mittertreiner <gwenm@fb.com>
Co-authored-by: Gwen Mittertreiner <gwen.mittertreiner@gmail.com>
In preparation for moving to llvm's opaque pointer representation
replace getPointerElementType and CreateCall/CreateLoad/Store uses that
dependent on the address operand's pointer element type.
This means an `Address` carries the element type and we use
`FunctionPointer` in more places or read the function type off the
`llvm::Function`.
This adds a new reflection record type carrying spare bit information for multi-payload enums.
The compiler includes this for any type that might need it in order to accurately reflect the contents of the enum. The RemoteMirror library will use this if present to determine how to project the contents of the enum. If not present (for example, in older binaries), the RemoteMirror library falls back on an internal calculation of the spare bitmask.
A few notes:
* The internal calculation is not perfect. In particular, it does not support MPEs that contain other enums (e.g., optionals). It should accurately refuse to project any MPE that it does not correctly support.
* The new reflection field is designed to be expandable; this might someday avoid the need for a new section.
Resolves rdar://61158214
Previously, specialized value witness functions were emitted and used in
the prespecialized value witness table corresponding to and pointed to
by the prespecialized metadata for a generic type whose metadata was
prespecialized. That incurs a codesize cost: specialized value witness
functions had to be emitted. Here, the generic value witness functions
are used instead.
The change is not entirely trivial, though. We can't simply emit all
the witnesses for the unbound generic type (indeed if that were possible
there would be no need to emit a separate VWT). There are two reasons:
(1) the non-function fields (size, stride, flags, extra inhabitant
count) need to be those for the specialized generic type, (2) in the
case of multi-payload enums, the getEnumTagSinglePayload and
storeEnumTagSinglePayload witnesses cannot be those emitted for the
unspecialized generic type--instead they need to be
swift_getMultiPayloadEnumTagSinglePayload and
swift_storeMultiPayloadEnumTagSinglePayload respectively.
1) Shrink from 4 bytes to 1 byte.
2) Assert that alignments are power-of-two at run time.
3) Assert that alignments are power-of-two at compile time when possible.
4) Eliminate "isZero"/"no alignment" from the type. Use llvm::Optional.
If there the layout is not dependent on archetypes and but has resilient types
using the new type layout based approach is not going to be faster.
rdar://59960653
Augment the `isSingleRetainablePointer` check that allows IRGen to avoid adding branching around retain/release operations on enums that use the null pointer extra inhabitant with a more general "can value witness extra inhabitants" method on TypeInfo, which says whether a type's retain/release operations are safe to invoke on some or all of its extra inhabitants. This lets us generalize the optimization to include things like `String?` or `ClassProtocol?` which are common types with a nullable pointer in them.
Prespecialized metadata records must refer to value witness tables that
have correct values for size and stride. In order to do that, a
prespecialized value witness table must emitted and referred to. Here,
a fully specialized value witness table is emitted.
For the moment, the value witness table is fully specialized. Having it
be specialized, though, will likely cause serious code size problems,
since it results in specialized value witness functions being generated.
rdar://problem/58088270
Prespecialized records contain direct references to the generic
arguments and protocol witnesses with which it is specialized for now.
Both prespecialized records and the records that are specialized at
runtime gain a trailing pointer-sized flagset. For now, the flags in it
include whether the record was prespecialized and whether it was known
to be canonical at compile time (which is true for prespecialized
records within the module which defines the type whose metadata is
specialized since in those cases the metadata accessor can be modified).
rdar://problem/56960307
This removes it from the AST and largely replaces it with AnyObject
at the SIL and IRGen layers. Some notes:
- Reflection still uses the notion of "unknown object" to mean an
object with unknown refcounting. There's no real reason to make
this different from AnyObject (an existential containing a
single object with unknown refcounting), but this way nothing
changes for clients of Reflection, and it's consistent with how
native objects are represented.
- The value witness table and reflection descriptor for AnyObject
use the mangling "BO" instead of "yXl".
- The demangler and remangler continue to support "BO" because it's
still in use as a type encoding, even if it's not an AST-level
Type anymore.
- Type-based alias analysis for Builtin.UnknownObject was incorrect,
so it's a good thing we weren't using it.
- Same with enum layout. (This one assumed UnknownObject never
referred to an Objective-C tagged pointer. That certainly wasn't how
we were using it!)