Refactor Immediate Mode to use the Materialization Unit API,
materializing the entire `SILModule` corresponding to the script
when the `main` symbol is looked up.
Some frameworks that previously had a separate swift overlay have been
merged in macOS 14. This is causing symbols to not resolve if using the
new SDK but running on an older OS in immediate mode. Ideally we would
handle this automatically in JITLink as is done by the system linker,
but in the meantime add a workaround to load the correct libraries
manually.
rdar://110371405
Using a virutal output backend to capture all the outputs from
swift-frontend invocation. This allows redirecting and/or mirroring
compiler outputs to multiple location using different OutputBackend.
As an example usage for the virtual outputs, teach swift compiler to
check its output determinism by running the compiler invocation
twice and compare the hash of all its outputs.
Virtual output will be used to enable caching in the future.
When looking for a Swift module on disk, we were scanning all module search paths if they contain the module we are searching for. In a setup where each module is contained in its own framework search path, this scaled quadratically with the number of modules being imported. E.g. a setup with 100 modules being imported form 100 module search paths could cause on the order of 10,000 checks of `FileSystem::exists`. While these checks are fairly fast (~10µs), they add up to ~100ms.
To improve this, perform a first scan of all module search paths and list the files they contain. From this, create a lookup map that maps filenames to the search paths they can be found in. E.g. for
```
searchPath1/
Module1.framework
searchPath2/
Module1.framework
Module2.swiftmodule
```
we create the following lookup table
```
Module1.framework -> [searchPath1, searchPath2]
Module2.swiftmodule -> [searchPath2]
```
This is for the 'freestanding' build to stop assuming the platform has argc/argv.
- Introduce a new sub-library, libswiftCommandLineSupport.a
- Move stubs/CommandLine.cpp into this library
- Conditionally embed it into libswiftCore
- Conditionally embed it into libswiftPrivateLibcExtras if not in libswiftCore to support testing
- Add SWIFT_STDLIB_HAS_COMMANDLINE CMake (and build-script) flag
* add the (still empty) libswift package
* add build support for libswift in CMake
* add libswift to swift-frontend and sil-opt
The build can be controlled with the LIBSWIFT_BUILD_MODE cmake variable: by default it’s “DISABLE”, which means that libswift is not built. If it’s “HOSTTOOLS”, libswift is built with a pre-installed toolchain on the host system.
Add a debugging mechanism that enables the JIT to dump the LLVM IR and
object files to enable debugging the JIT. This makes it easier to debug
the JIT mode failures. The idea was from Lang Hames!
With an inverted pipeline, IRGen needs to be able
to compute the linker directives itself, so sink
it down such that it can be computed by the
`IRGenDescriptor`.
With an inverted pipeline, IRGen needs to be able
to compute the linker directives itself, so sink
it down such that it can be computed by the
`IRGenDescriptor`.
There's no need to walk all imports of all source files, and bind the
extensions defined therein. The only time that a non-main module
contains source files is when using -enable-source-import, and we
can just explicitly call bindExtensions() in the right place.