If the pattern doesn't have any pack parameters in it anymore,
we need to recover the substituted count type from the original
count type.
Fixes rdar://problem/112065340.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
variadic-tuple results. There are three parts to this.
First, fix the emission of indirect result parameters to do a
proper abstraction-pattern-aware traversal of tuple patterns.
There was a FIXME here and everything.
Second, fix the computation of substituted abstraction
patterns to properly handle vanishing tuples. The previous code
was recursively destructuring tuples, but only when it saw a
tuple as the substituted type, which of course breaks on vanishing
tuples.
Finally, fix the emission of returns into vanishing tuple
patterns by allowing the code to not produce a TupleInitialization
when the tuple pattern vanishes. We should always get a singleton
element initializer in this case.
Fixes rdar://109843932, plus a closely-related test case for
vanishing tuples that I added myself.
In asserts builds, the lexicality of packs is verified via an
alternative code-path that walks into aggregates. That walk needs to
proceed through packs.
rdar://107283101
whichever case it happens to be in.
This is a basic fix so that parallel walks on tuples and function
types in the substituted type will work . Separately, though, I
do not think the places that use this really need to be passed an
orig type; this is used for computing type properties, and I am
not aware of any reason we should need an orig type to compute
type properties. Additionally, the orig types computed by this
function are not really correct because of the substitution being
done in some cases, so it'd be very nice to rip this all out.
I'm not good to look into that right now, though.
and not also drop a subst parameter.
This turned out to be more convenient for certain clients (e.g. SILGenPoly)
than requiring the full subst param list to be passed in. These clients
want to process the subst param list separately, and dropping self early
can be convenient for that. The only fundamental reason we need this
flag is for working with the orig type, so just use it for that; clients
that need to use this feature can reasonably be expected to cooperate.
This is necessary because the use patterns in SILGenPoly require
walking two orig+subst sequences in parallel, which poses problems
for a callback-centric design like the one I addded before. An
inversion of control is necessary; this is basically a manual
coroutine. But frankly it's a nicer interface than the callback
design, too; I switched the implementation of forEachFunctionParam
to use the generator just to avoid code duplication, but I might
try to remove it and switch all the clients over to the generator.
The main problems with the callback design are that (1) I wasn't
sure which values clients would want, and the result is that there
are a *lot* of parameters and (2) (relatedly) the types of those
parameters have to be written out explicitly, and some of them
are quite large. The generator code is just much nicer. Maybe
I can still give the generator a little unparameterized callback
to keep lexical loops simple.
I'll need to do this same thing for tuples. One at a time.
As I've been iterating on this work, I've been gradually mulling these
over, and I think this is the way to go for now. These should make it
a lot less cumbersome to write these kinds of traversals correctly.
The intent is to the sunset the existing expanded-components stuff
after I do a similar pass for function parameters.
This allows the AP to answer questions like how many
elements/parameters in the substituted type correspond to
this pack expansion.
I've threaded this through a lot of cases for foreign patterns
that probably won't ever need it.
- SILPackType carries whether the elements are stored directly
in the pack, which we're not currently using in the lowering,
but it's probably something we'll want in the final ABI.
Having this also makes it clear that we're doing the right
thing with substitution and element lowering. I also toyed
with making this a scalar type, which made it necessary in
various places, although eventually I pulled back to the
design where we always use packs as addresses.
- Pack boundaries are a core ABI concept, so the lowering has
to wrap parameter pack expansions up as packs. There are huge
unimplemented holes here where the abstraction pattern will
need to tell us how many elements to gather into the pack,
but a naive approach is good enough to get things off the
ground.
- Pack conventions are related to the existing parameter and
result conventions, but they're different on enough grounds
that they deserve to be separated.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
We had two notions of canonical types, one is the structural property
where it doesn't contain sugared types, the other one where it does
not contain reducible type parameters with respect to a generic
signature.
Rename the second one to a 'reduced type'.