`get_async_continuation[_addr]` begins a suspend operation by accessing the continuation value that can resume
the task, which can then be used in a callback or event handler before executing `await_async_continuation` to
suspend the task.
Today unchecked_bitwise_cast returns a value with ObjCUnowned ownership. This is
important to do since the instruction can truncate memory meaning we want to
treat it as a new object that must be copied before use.
This means that in OSSA we do not have a purely ossa forwarding unchecked
layout-compatible assuming cast. This role is filled by unchecked_value_cast.
The ``base_addr_for_offset`` instruction creates a base address for offset calculations.
The result can be used by address projections, like ``struct_element_addr``, which themselves return the offset of the projected fields.
IR generation simply creates a null pointer for ``base_addr_for_offset``.
* a new [immutable] attribute on ref_element_addr and ref_tail_addr
* new instructions: begin_cow_mutation and end_cow_mutation
These new instructions are intended to be used for the stdlib's COW containers, e.g. Array.
They allow more aggressive optimizations, especially for Array.
Specifically, I split it into 3 initial categories: IR, Utils, Verifier. I just
did this quickly, we can always split it more later if we want.
I followed the model that we use in SILOptimizer: ./lib/SIL/CMakeLists.txt vends
a macro (sil_register_sources) to the sub-folders that register the sources of
the subdirectory with a global state variable that ./lib/SIL/CMakeLists.txt
defines. Then after including those subdirs, the parent cmake declares the SIL
library. So the output is the same, but we have the flexibility of having
subdirectories to categorize source files.