This patch replace all in-memory objects of DebugValueAddrInst with
DebugValueInst + op_deref, and duplicates logics that handles
DebugValueAddrInst with the latter. All related check in the tests
have been updated as well.
Note that this patch neither remove the DebugValueAddrInst class nor
remove `debug_value_addr` syntax in the test inputs.
Due to mismatch in the instructions handled in DestroyHoisting::getUsedLocationsOfInst
and MemoryLocations::analyzeLocationUsesRecursively, certain users of addresses
were not considered and the destroys were hoisted before valid uses causing use-after-frees
And rename MemoryDataflow -> BitDataflow.
MemoryLifetime contained MemoryLocations, MemoryDataflow and the MemoryLifetimeVerifier.
Three independent things, for which it makes sense to have them in three separated files.
NFC.
Also, relax the check for enums a bit. Instead of only accepting single-payload enums, just require that the payload type is the same for an enum location.
Verify that
* the destination address is an alloc_stack
* the stack location is not modified beside a store_borrow
* the stack location has been initialized when used
This is kind of complicated, because an enum can be trivial for one case and not trivial for another case. We need to check at which parts of the function we can prove that the enum does (or could) have a trivial case. In such a branch, it's not required in SIL to destroy the enum location.
Also, document the rules and requirements for enum memory locations in SIL.rst.
rdar://73770085
My goal was to reduce the size of SILLocation. It now contains only of a storage union, which is basically a pointer and a bitfield containing the Kind, StorageKind and flags. By far, most locations are only single pointers to an AST node. For the few cases where more data needs to be stored, this data is allocated separately: with the SILModule's bump pointer allocator.
While working on this, I couldn't resist to do a major refactoring to simplify the code:
* removed unused stuff
* The term "DebugLoc" was used for 3 completely different things:
- for `struct SILLocation::DebugLoc` -> renamed it to `FilePosition`
- for `hasDebugLoc()`/`getDebugSourceLoc()` -> renamed it to `hasASTNodeForDebugging()`/`getSourceLocForDebugging()`
- for `class SILDebugLocation` -> kept it as it is (though, `SILScopedLocation` would be a better name, IMO)
* made SILLocation more "functional", i.e. replaced some setters with corresponding constructors
* replaced the hand-written bitfield `KindData` with C bitfields
* updated and improved comments
The XXOptUtils.h convention is already established and parallels
the SIL/XXUtils convention.
New:
- InstOptUtils.h
- CFGOptUtils.h
- BasicBlockOptUtils.h
- ValueLifetime.h
Removed:
- Local.h
- Two conflicting CFG.h files
This reorganization is helpful before I introduce more
utilities for block cloning similar to SinkAddressProjections.
Move the control flow utilies out of Local.h, which was an
unreadable, unprincipled mess. Rename it to InstOptUtils.h, and
confine it to small APIs for working with individual instructions.
These are the optimizer's additions to /SIL/InstUtils.h.
Rename CFG.h to CFGOptUtils.h and remove the one in /Analysis. Now
there is only SIL/CFG.h, resolving the naming conflict within the
swift project (this has always been a problem for source tools). Limit
this header to low-level APIs for working with branches and CFG edges.
Add BasicBlockOptUtils.h for block level transforms (it makes me sad
that I can't use BBOptUtils.h, but SIL already has
BasicBlockUtils.h). These are larger APIs for cloning or removing
whole blocks.
DestroyHoisting moves destroys of memory locations up the control flow as far as possible.
Beside destroy_addr, also "store [assign]" is considered a destroy, because is is equivalent to an destroy_addr + a "store [init]".
The main purpose of this optimization is to minimize copy-on-write operations for arrays, etc. Especially if such COW containers are used as enum payloads and modified in-place. E.g.
switch e {
case .A(var arr):
arr.append(x)
self = .A(arr)
...
In such a case DestroyHoisting can move the destroy of the self-assignment up before the switch and thus let the array buffer only be single-referenced at the time of the append.
When we have ownership SIL throughout the pass pipeline this optimization will replace the current destroy hoisting optimization in CopyForwarding.
For now, this optimization only runs in the mandatory pipeline (but not for -Onone) where we already have ownership SIL.
SR-10605
rdar://problem/50463362