Introduce the notion of "semantic result parameter". Handle differentiation of inouts via semantic result parameter abstraction. Do not consider non-wrt semantic result parameters as semantic results
Fixes#67174
It is necessary for opaque values where for casts that will newly start
out as checked_cast_brs and be lowered to checked_cast_addr_brs, since
the latter has the source formal type, IRGen relies on being able to
access it, and there's no way in general to obtain the source formal
type from the source lowered type.
Types that have "value semantics" should not have lexical lifetimes.
Value types are not expected to have custom deinits. Are not expected to
expose unsafe interior pointers. And cannot have weak references because
they are structs. Therefore, deinitialization barriers are irrelevant.
rdar://107076869
Fix the common error of using underscores instead of dashes.
In the rebranch this is an error (lit got more picky), but it also makes sense to fix the tests in the main branch
Closure literals are sometimes type-checked as one type then immediately converted to another
type in the AST. One particular case of this is when a closure body never throws, but the closure
is used as an argument to a function that takes a parameter that `throws`. Emitting this naively,
by emitting the closure as its original type, then converting to throws, can be expensive for
async closures, since that takes a reabstraction thunk. Even for non-async functions, we still want
to get the benefit of reabstraction optimization for the closure literal through the conversion too.
So if the function conversion just add `throws`, emit the closure as throwing, and pass down the
context abstraction pattern when emitting the closure as well.
Compiler:
- Add `Forward` and `Reverse` to `DifferentiabilityKind`.
- Expand `DifferentiabilityMask` in `ExtInfo` to 3 bits so that it now holds all 4 cases of `DifferentiabilityKind`.
- Parse `@differentiable(reverse)` and `@differentiable(_forward)` declaration attributes and type attributes.
- Emit a warning for `@differentiable` without `reverse`.
- Emit an error for `@differentiable(_forward)`.
- Rename `@differentiable(linear)` to `@differentiable(_linear)`.
- Make `@differentiable(reverse)` type lowering go through today's `@differentiable` code path. We will specialize it to reverse-mode in a follow-up patch.
ABI:
- Add `Forward` and `Reverse` to `FunctionMetadataDifferentiabilityKind`.
- Extend `TargetFunctionTypeFlags` by 1 bit to store the highest bit of differentiability kind (linear). Note that there is a 2-bit gap in `DifferentiabilityMask` which is reserved for `AsyncMask` and `ConcurrentMask`; `AsyncMask` is ABI-stable so we cannot change that.
_Differentiation module:
- Replace all occurrences of `@differentiable` with `@differentiable(reverse)`.
- Delete `_transpose(of:)`.
Resolves rdar://69980056.
I am going to be using in inst-simplify/sil-combine/canonicalize instruction a
RAUW everything against everything API (*). This creates some extra ARC
traffic/borrows. It is going to be useful to have some simple peepholes that
gets rid of some of the extraneous traffic.
(*) Noting that we are not going to support replacing non-trivial
OwnershipKind::None values with non-trivial OwnershipKind::* values. This is a
corner case that only comes up with non-trivial enums that have a non-payloaded
or trivial enum case. It is much more complex to implement that transform, but
it is an edge case, so we are just not going to support those for now.
----
I also eliminated the dependence of SILGenCleanup on Swift/SwiftShims. This
speeds up iterating on the test case with a debug compiler since we don't need
those modules.
Add differentiation support for non-active `try_apply` SIL instructions.
Notable pullback generation changes:
* Original basic blocks are now visited in a different order:
* starting from the original basic block, all its predecessors
* are visited in a breadth-first search order. This ensures that
* all successors of any block are visited before the block itself.
Resolves TF-433.
Pullback generation now supports `switch_enum` and `switch_enum_addr`
instructions for `Optional`-typed operands.
Currently, the logic is special-cased to `Optional`, but may be generalized in
the future to support enums following general rules.
* [SILGenFunction] Don't create redundant nested debug scopes
Instead of emitting:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":7:3 parent 5 }
sil_scope 7 { loc "main.swift":7:3 parent 5 }
sil_scope 8 { loc "main.swift":9:5 parent 4 }
```
Emit:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":9:5 parent 5 }
```
* [IRGenSIL] Diagnose conflicting shadow copies
If we attempt to store a value with the wrong type into a slot reserved
for a shadow copy, diagnose what went wrong.
* [SILGenPattern] Defer debug description of case variables
Create unique nested debug scopes for a switch, each of its case labels,
and each of its case bodies. This looks like:
```
switch ... { // Enter scope 1.
case ... : // Enter scope 2, nested within scope 1.
<body-1> // Enter scope 3, nested within scope 2.
case ... : // Enter scope 4, nested within scope 1.
<body-2> // Enter scope 5, nested within scope 4.
}
```
Use the new scope structure to defer emitting debug descriptions of case
bindings. Specifically, defer the work until we can nest the scope for a
case body under the scope for a pattern match.
This fixes SR-7973, a problem where it was impossible to inspect a case
binding in lldb when stopped at a case with multiple items.
Previously, we would emit the debug descriptions too early (in the
pattern match), leading to duplicate/conflicting descriptions. The only
reason that the ambiguous description was allowed to compile was because
the debug scopes were nested incorrectly.
rdar://41048339
* Update tests
For COW support in SIL it's required to "finalize" array literals.
_finalizeUninitializedArray is a compiler known stdlib function which is called after all elements of an array literal are stored.
This runtime function marks the array literal as finished.
%uninitialized_result_tuple = apply %_allocateUninitializedArray(%count)
%mutable_array = tuple_extract %uninitialized_result_tuple, 0
%elem_base_address = tuple_extract %uninitialized_result_tuple, 1
...
store %elem_0 to %elem_addr_0
store %elem_1 to %elem_addr_1
...
%final_array = apply %_finalizeUninitializedArray(%mutable_array)
In this commit _finalizeUninitializedArray is still a no-op because the COW support is not used in the Array implementation yet.
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
Support differentiation of `is` and `as?` operators.
These operators lower to branching cast SIL instructions, requiring control
flow differentiation support.
Resolves SR-12898.