The order for writing records of the stdlib currently depends on
`StringMap` iteration (in a slightly roundabout manner). Sort these
alphabetically instead.
Rather than using `ModuleDecl::isSystemModule()` to determine whether a
module is not a user module, instead check whether the module was
defined adjacent to the compiler or if it's part of the SDK.
If no SDK path was given, then `isSystemModule` is still used as a
fallback.
Resolves rdar://89253201.
If a module was first read using the adjacent swiftmodule and then
reloaded using the swiftinterface, we would do an up to date check on
the adjacent module but write out the unit using the swiftinterface.
This would cause the same modules to be indexed repeatedly for the first
invocation using a new SDK. On the next run we would instead raad the
swiftmodule from the cache and thus the out of date check would match
up.
The impact of this varies depending on the size of the module graph in
the initial compilation and the number of jobs started at the same time.
Each SDK dependency is re-indexed *and* reloaded, which is a drain on
both CPU and memory. Thus, if many jobs are initially started and
they're all going down this path, it can cause the system to run out of
memory very quickly.
Resolves rdar://103119964.
No longer test the round trip remapping for the output file - we'll be
changing the reader to preserve the canonical output file path instead
of converting it back to local. Once all of the changes are complete, we
can swap this to verify it is canonical, but indexstore-db will also
check this with its own tests.
The number of dependencies isn't super important for this test - it is
just checking paths are correctly remapped. Remove the check for the
number of dependencies.
Swiftc port of https://github.com/apple/llvm-project/pull/4207.
This introduces a new flag, `-file-prefix-map` which can be used
instead of the existing `-debug-prefix-map` and `-coverage-prefix-map`
flags, and also remaps paths in index information currently.
Properties can also be specified in a protocol/overridden by subclasses,
so they should also be classed as "dynamic" in these cases.
Removed receiver USRs when *not* dynamic, since it's not used for
anything in that case and should be equivalent to the container anyway.
Resolves rdar://92882348.
References associated with a `VarDecl` had no `RelationContainedBy` role, resulting in "orphaned" references. From the perspective of identifying unused code (in tools using the index, like [Periphery](https://github.com/peripheryapp/periphery)), this made it impossible to identify that a variable's type, initializer and custom attributes are associated with the variable.
Resolves: [SR-13766](https://bugs.swift.org/browse/SR-13766)
For various reasons, it can be useful/interesting to create builds of
Swift that minimize dependencies. Let's try to keep that working as long
as we can.
The frontend supports this via new options -index-unit-output-path and
-index-unit-output-path-filelist that mirror -o and -output-filelist. These are
intended to allow sharing index data across builds in separate directories (so
different -o values) that are otherwise equivalent as far as the index data is
concerned (e.g. an ASAN build and a non-ASAN build) by supplying the same
-index-unit-output-path for both.
This change updates the driver to add these new options to the frontend
invocation 1) when a new "index-unit-output-path" entry is specified for one
or more input files in the -output-file-map json or 2) if -index-file is
specified, when a new -index-unit-output-path driver option is passed.
Resolves rdar://problem/74816412
These new options mirror -o and -output-filelist and are used instead
of those options to supply the output file path(s) to record in the
index store. This is intended to allow sharing index data across
builds in separate directories that are otherwise equivalent as far
as the index data is concered (e.g. an ASAN build and a non-ASAN build)
by supplying the same -index-unit-output-path for both.
Resolves rdar://problem/74816412
Build swift-frontend as the primary Swift binary, and have
swift/swiftc/etc. symlink over to it. This is a step toward allowing
swift-driver to replace the swift and swiftc binaries.
c-index-test sorts the units by their file name, which for the modules in
in this test is just [target-triple].swiftinterface-[hash-of-full-output-path]
and so changes depending on where it's run.
Several tests related to indexing system modules were taking a considerable
amount of time (100+ seconds in the worst case) indexing the standard library.
This adds a frontend option to skip it and updates those tests to pass it.
It was hard-coding IsStatic to false rather than passing it through from the
VarDecl, giving the same USR for the two getters in the below:
class FixtureClass95 {
private static var someVar: String!
private var someVar: String!
}
Resolves rdar://problem/44531531
Clang 8 or 9 seems to have changed from EXE to exe. Allow both
capitalizations (which is not important in Windows) as a workaround.
Maybe in the future we can remove the uppercase option.
...a situation we get into with indexing. The way Xcode generates
indexing invocations is to take a build command and add additional
flags to it; in order for the Driver to produce a single frontend
command from /that/, it currently plans as if it's going to do a
whole-module -typecheck and then turns around and uses -primary-file
anyway. This is questionable practice, to be sure...
...but meanwhile, let's not crash by trying to access declarations
that haven't been type-checked yet.
rdar://problem/53117124
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances in the swift repo.
`chmod -w` really doesn't make sense on Windows. Although NTFS allows
for readonly directories, it is something done through file system level
ACLs. This test doesn't really apply to Windows.
This changes the Swift resource directory from looking like
lib/
swift/
macosx/
libswiftCore.dylib
libswiftDarwin.dylib
x86_64/
Swift.swiftmodule
Swift.swiftdoc
Darwin.swiftmodule
Darwin.swiftdoc
to
lib/
swift/
macosx/
libswiftCore.dylib
libswiftDarwin.dylib
Swift.swiftmodule/
x86_64.swiftmodule
x86_64.swiftdoc
Darwin.swiftmodule/
x86_64.swiftmodule
x86_64.swiftdoc
matching the layout we use for multi-architecture swiftmodules
everywhere else (particularly frameworks).
There's no change in this commit to how Linux swiftmodules are
packaged. There's been past interest in going the /opposite/ direction
for Linux, since there's not standard support for fat
(multi-architecture) .so libraries. Moving the .so search path /down/
to an architecture-specific directory on Linux would allow the same
resource directory to be used for both host-compiling and
cross-compiling.
rdar://problem/43545560