Mandatory copy propagation was primarily a stop-gap until lexcial
lifetimes were implemented. It supposedly made variables lifetimes
more consistent between -O and -Onone builds. Now that lexical
lifetimes are enabled, it is no longer needed for that purpose (and
will never satisfactorily meet that goal anyway).
Mandatory copy propagation may be enabled again later as a -Onone "
optimization. But that requires a more careful audit of the effect on
debug information.
For now, it should be disabled.
The effect of passing -enable-copy-propagation is both to enable the
CopyPropagation pass to shorten object lifetimes and also to enable
lexical lifetimes to ensure that object lifetimes aren't shortened while
a variable is still in scope and used.
Add a new flag, -enable-lexical-borrow-scopes=true to override
-enable-copy-propagation's effect (setting it to ::ExperimentalLate) on
SILOptions::LexicalLifetimes that sets it to ::Early even in the face of
-enable-copy-propagation. The old flag -disable-lexical-lifetimes is
renamed to -enable-lexical-borrow-scopes=false but continues to set that
option to ::Off even when -enable-copy-propagation is passed.
Commit the platform definition and build script work necessary to
cross-compile for arm64_32.
arm64_32 is a variant of AARCH64 that supports an ILP32 architecture.
Problem: We continue to uncover code that assumes either precise local
variable lifetimes (to the end of the lexical scope) or extended
temporary lifetimes (to the end of the statement). These bugs require
heroic debugging to find the root cause. Because they only show up in
Release builds, they often manifest just before the affected project
“ships” under an impending deadline.
We now have enough information from projects that have been tested
with copy propagation that we can both understand common patterns and
identify some specific APIs that may cause trouble. We know what API
annotations the compiler will need for helpful warnings and can begin
adding those annotations.
Disabling copy propagation now is only a temporary deferral, we will
still need to bring it back by default. However, by then we should
have:
- LLDB and runtime support for debugging deinitialized objects
- A variant of lifetime sortening that can run in Debug builds to
catch problems before code ships
- Static compiler warnings for likely invalid lifetime assumptions
- Source annotations that allow those warnings to protect programmers
against existing dangerous APIs
In the meantime...
Projects can experiment with the behavior and gradually migrate.
Copy propagation will automatically be enabled in -enable-ossa-modules
mode. It is important to work toward a single performance
target. Supporting full OSSA and improving ARC performance without
copy propagation would be prohibitively complicated.
rdar://76438920 (Temporarily disable -O copy propagation by default)
This feature degrades the debugging experience and causes a large
number of unit test failures.
These were both known issues, but our planned debugger improvements
won't be ready for a while. Until then, we'll leave the feature under
a compiler option, and developers can adopt it at there own speed for
now when they are ready to fix lifetime issues in their code.
rdar://76177280 (Disable mandatory-copy-propagation (-Onone only))
This shortens -Onone lifetimes.
To eliminate ARC traffic, the optimizer reorders object
destruction. This changes observable program behavior. If a custom
deinitializer produces side effects, code may observe those side
effects earlier after optimization. Similarly, code that dereferences
a weak reference may observe a 'nil' reference after optimization,
while the unoptimized code observed a valid object.
Developers have overwhelmingly requested that object lifetimes have
similar behavior in -Onone and -O builds in order to find and diagnose
program bugs involving weak references and other lifetime assumptions.
Enabling the copy propagation at -Onone is simply a matter of flipping
a switch. -Onone runtime and code size will improve. By design, copy
propagation, has no direct affect on compile time. It will indirectly
improve optimized compile times, but in debug builds, it simply isn't
a factor.
To support debugging, a "poison" flag was (in prior commits) added to
new destroy_value instructions generated by copy propagation. When
OwnershipModelEliminator lowers destroy_value [poison] it will
generate new debug_value instructions with a “poison” flag.
These additional poison stores to the stack could increase both code
size and -Onone runtime.
rdar://75012368 (-Onone compiler support for early object deinitialization with sentinel dead references)
For now simply run the pass before SemanticARCOpts. This will probably
be called as a utility from within SemanticARCOpts so it can be
iteratively applied after other ARC-related transformations.
These tests require the ObjC Foundation framework currently (although it
should be possible have them use the swift corelibs Foundation project
to satisfy this requirement). Marking the tests indicates that these
tests do not have the dependencies to run on Windows.
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."
This patch adds powerpc64le Linux support. While the patch also adds
the matching powerpc64 bits, there are endian issues that need to be
sorted out.
The PowerPC LLVM changes for the swift ABI (eg returning three element
non-homogeneous aggregates) are still in the works, but a simple LLVM
fix to allow those aggregates results in swift passing all but 8
test cases.
We used to reserve a specific spare bit to say "this is a native
object." Now, we're going to say, "if *any* spare bit is set, this is a
native object." At the cost of having no spare bits to work with in the
non-native case, this allows us to store a number in 1..<4 (actually
0..<4, at some cost in speed for the 0 case) along with any native
object on all platforms.
This half bit advantage is important on 32-bit platforms, we have only
spare 2 bits to work with.
Given that on the 64-bit platforms there are *no* spare bits in the case
where the object is a non-native tagged pointer, we have no guarantee of
being able to store extra information along with an arbitrary non-native
object. Giving up the ability to store bits for *all* non-native
objects (even non-tagged ones) is therefore not much of a sacrifice.
Fixes <rdar://problem/18920415> More useful spare bits in Builtin.BridgeObject
Swift SVN r23345
This is a type that has ownership of a reference while allowing access to the
spare bits inside the pointer, but which can also safely hold an ObjC tagged pointer
reference (with no spare bits of course). It additionally blesses one
Foundation-coordinated bit with the meaning of "has swift refcounting" in order
to get a faster short-circuit to native refcounting. It supports the following
builtin operations:
- Builtin.castToBridgeObject<T>(ref: T, bits: Builtin.Word) ->
Builtin.BridgeObject
Creates a BridgeObject that contains the bitwise-OR of the bit patterns of
"ref" and "bits". It is the user's responsibility to ensure "bits" doesn't
interfere with the reference identity of the resulting value. In other words,
it is undefined behavior unless:
castReferenceFromBridgeObject(castToBridgeObject(ref, bits)) === ref
This means "bits" must be zero if "ref" is a tagged pointer. If "ref" is a real
object pointer, "bits" must not have any non-spare bits set (unless they're
already set in the pointer value). The native discriminator bit may only be set
if the object is Swift-refcounted.
- Builtin.castReferenceFromBridgeObject<T>(bo: Builtin.BridgeObject) -> T
Extracts the reference from a BridgeObject.
- Builtin.castBitPatternFromBridgeObject(bo: Builtin.BridgeObject) -> Builtin.Word
Presents the bit pattern of a BridgeObject as a Word.
BridgeObject's bits are set up as follows on the various platforms:
i386, armv7:
No ObjC tagged pointers
Swift native refcounting flag bit: 0x0000_0001
Other available spare bits: 0x0000_0002
x86_64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0001
Swift native refcounting flag bit: 0x0000_0000_0000_0002
Other available spare bits: 0x7F00_0000_0000_0004
arm64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0000
Swift native refcounting flag bit: 0x4000_0000_0000_0000
Other available spare bits: 0x3F00_0000_0000_0007
TODO: BridgeObject doesn't present any extra inhabitants. It ought to at least provide null as an extra inhabitant for Optional.
Swift SVN r22880