Throwing functions pass the error result in `swiftself` to the resume
partial function.
Therefore, `() async -> ()` to `() async throws -> ()` is not ABI compatible.
TODO: go through remaining failing IRGen async tests and replace the
illegal convert_functions.
Most of the async runtime functions have been changed to not
expect the task and executor to be passed in. When knowing the
task and executor is necessary, there are runtime functions
available to recover them.
The biggest change I had to make to a runtime function signature
was to swift_task_switch, which has been altered to expect to be
passed the context and resumption function instead of requiring
the caller to park the task. This has the pleasant consequence
of allowing the implementation to very quickly turn around when
it recognizes that the current executor is satisfactory. It does
mean that on arm64e we have to sign the continuation function
pointer as an argument and then potentially resign it when
assigning into the task's resume slot.
rdar://70546948
This is conditional on UseAsyncLowering and in the future should also be
conditional on `clangTargetInfo.isSwiftAsyncCCSupported()` once that
support is merged.
Update tests to work either with swiftcc or swifttailcc.
We want to use the 'just built' compiler for the runtime tests because
of the recently added `swiftasync` parameter support.
But ASAN won't link if we use the 'just built' compiler because libgtest
and LLVMSupport are compiled by the host compiler.
Disable the runtime test when running under ASAN.
rdar://73664504
* Adds support for generating code that uses swiftasync parameter lowering.
* Currently only arm64's llvm lowering supports the swift_async_context_addr intrinsic.
* Add arm64e pointer signing of updated swift_async_context_addr.
This commit needs the PR llvm-project#2291.
* [runtime] unittests should use just-built compiler if the runtime did
This will start to matter with the introduction of usage of swiftasync parameters which only very recent compilers support.
rdar://71499498
When reallocating storage, the storing the pointer to the new storage had insufficiently strong ordering. This could cause writers to check the reader count before storing the new storage pointer. If a reader then came in between that load and store, it would end up using the old storage pointer, while the writer could end up freeing it.
Also adjust the Concurrent.cpp tests to test with a variety of reader and writer counts. Counterintuitively, when freeing garbage is gated on there being zero readers, having a single reader will shake out problems that having lots of readers will not. We were testing with lots of readers in order to stress the code as much as possible, but this resulted in it being extremely rare for writers to ever see zero active readers.
rdar://69798617
A StackAllocator performs fast allocation and deallocation of memory by implementing a bump-pointer allocation strategy.
In contrast to a pure bump-pointer allocator, it's possible to free memory.
Allocations and deallocations must follow a strict stack discipline.
In general, slabs which become unused are _not_ freed, but reused for subsequent allocations.
The first slab can be placed into pre-allocated memory.
Introduce `FutureAsyncContext` to line up with the async context formed
by IR generation for the type `<T> () async throws -> T`. When allocating
a future task, set up the context with the address of the future's storage
for the successful result and null out the error result, so the caller
will directly fill in the result. This eliminates a bunch of extra
complexity and a copy.
Extend AsyncTask and the concurrency runtime with basic support for
task futures. AsyncTasks with futures contain a future fragment with
information about the type produced by the future, and where the
future will put the result value or the thrown error in the initial
context.
We still don't have the ability to schedule the waiting tasks on an
executor when the future completes, so this isn't useful for anything
just test, and we can only test limited code paths.
os_unfair_lock is much smaller than pthread_mutex_t (4 bytes versus 64) and a bit faster.
However, it doesn't support condition variables. Most of our uses of Mutex don't use condition variables, but a few do. Introduce ConditionMutex and StaticConditionMutex, which allow condition variables and continue to use pthread_mutex_t.
On all other platforms, we continue to use the same backing mutex type for both Mutex and ConditionMutex.
rdar://problem/45412121
* [Runtime] Switch MetadataCache to ConcurrentReadableHashMap.
Use StableAddressConcurrentReadableHashMap. MetadataCacheEntry's methods for awaiting a particular state assume a stable address, where it will repeatedly examine `this` in a loop while waiting on a condition variable, so we give it a stable address to accommodate that. Some of these caches may be able to tolerate unstable addresses if this code is changed to perform the necessary table lookup each time through the loop instead. Some of them store metadata inline and we assume metadata never moves, so they'll have to stay this way.
* Have StableAddressConcurrentReadableHashMap remember the last found entry and check that before doing a more expensive lookup.
* Make a SmallMutex type that stores the mutex data out of line, and use it to get LockingConcurrentMapStorage to fit into the available space on 32-bit.
rdar://problem/70220660
There are things about this that I'm far from sold on. In
particular, I'm concerned that in order to implement escalation
correctly, we're going to have to add a status record for the
fact that the task is being executed, which means we're going
to have to potentially wait to acquire the status lock; overall,
that means making an extra runtime function call and doing some
atomics whenever we resume or suspend a task, which is an
uncomfortable amount of overhead.
The testing here is pretty grossly inadequate, but I wanted to
lay down the groundwork here.
This gives us faster lookups and a small advantage in memory usage. Most of these maps need stable addresses for their entries, so we add a level of indirection to ConcurrentReadableHashMap for these cases to accommodate that. This costs some extra memory, but it's still a net win.
A new StableAddressConcurrentReadableHashMap type handles this indirection and adds a convenience getOrInsert to take advantage of it.
ConcurrentReadableHashMap is tweaked to avoid any global constructors or destructors when using it as a global variable.
ForeignWitnessTables does not need stable addresses and it now uses ConcurrentReadableHashMap directly.
rdar://problem/70056398
- Remove references to swiftImageInspectionShared on Linux and dont have
split libraries between static/non-static linked executables.
- -static-executable now links correctly Linux.
Note: swift::lookupSymbol() will not work on statically linked
executables but this can be worked around by using the
https://github.com/swift-server/swift-backtrace package.
to use it.
ConcurrentReadableHashMap is lock-free for readers, with writers using a lock to
ensure mutual exclusion amongst each other. The intent is to eventually replace
all uses ConcurrentMap with ConcurrentReadableHashMap.
ConcurrentReadableHashMap provides for relatively quick lookups by using a hash
table. Rearders perform an atomic increment/decrement in order to inform writers
that there are active readers. The design attempts to minimize wasted memory by
storing the actual elements out-of-line, and having the table store indices into
a separate array of elements.
The protocol conformance cache now uses ConcurrentReadableHashMap, which
provides faster lookups and less memory use than the previous ConcurrentMap
implementation. The previous implementation caches
ProtocolConformanceDescriptors and extracts the WitnessTable after the cache
lookup. The new implementation directly caches the WitnessTable, removing an
extra step (potentially a quite slow one) from the fast path.
The previous implementation used a generational scheme to detect when negative
cache entries became obsolete due to new dynamic libraries being loaded, and
update them in place. The new implementation just clears the entire cache when
libraries are loaded, greatly simplifying the code and saving the memory needed
to track the current generation in each negative cache entry. This means we need
to re-cache all requested conformances after loading a dynamic library, but
loading libraries at runtime is rare and slow anyway.
rdar://problem/67268325
Since libDemangling is included in the Swift standard library,
ODR violations can occur on platforms that allow statically
linking stdlib if Swift code is linked with other compiler
libraries that also transitively pull in libDemangling, and if
the stdlib version and compiler version do not match exactly
(even down to commit drift between releases). This lets the
runtime conditionally segregate its copies of the libDemangling
symbols from those in the compiler using an inline namespace
without affecting usage throughout source.
`swiftDemangling` was built three times:
1. swiftc
2. swiftRuntime
3. swiftReflection
Fold the last two instances into a single build, sharing the objects
across both the target libraries. This ensures that `swiftDemangling`
is built with the same compiler as the target libraries and that the
target library build remains self-contained.
Rather than build multiple copies of LLVMSupport (4x!) build it one and
merge it into the various targets. This would ideally not be needed to
be named explicitly everywhere, but that requires using `add_library`
rather than `add_swift_target_library`.
This adds a new copy of LLVMSupport into the runtime. This is the final
step before changing the inline namespace for the runtime support. This
will allow us to avoid the ODR violations from the header definitions of
LLVMSupport.
LLVMSupport forked at: 22492eead218ec91d349c8c50439880fbeacf2b7
Changes made to LLVMSupport from that revision:
process.inc forward declares `_beginthreadex` due to compilation issues due to custom flag handling
API changes required that we alter the `Deallocate` routine to account
for the alignment.
This is a temporary state, meant to simplify the process. We do not use
the entire LLVMSupport library and there is no value in keeping the
entire library. Subsequent commits will prune the library to the needs
for the runtime.
SWIFT_HOST_VARIANT is lowercase. SWIFT_HOST_VARIANT_SDK is uppercase.
Compare against the right one.
This tries to fix#29805, which didn't fix the CI for Windows VS2017.