The SwiftIfConfig library provides APIs for evaluating and extracting
the active #if regions in source code. Use its "configured regions" API
along with the ASTContext-backed build configuration to reimplement the
extraction of active/inactive regions from the source.
This approach has the benefit of being effectively stateless: where the
existing solution relies on the C++ parser recording all of the `#if`
clauses it sees as it is parsing (and then might have to sort them later),
this version does a scan of source to collect the list without requiring
any other state. The newer implementation is also conceptually cleaner,
and can be shared with other clients that have their own take on the
build configuration.
The primary client of this information is the SourceKit request that
identifies "inactive" regions within the source file, which IDEs can
use to grey out inactive code within the current build configuration.
There is also some profiling information that uses it. Those clients
should be unaffected by this under-the-hood change.
For the moment, I'm leaving the old code path in place for compiler
builds that don't have swift-syntax. This should be considered
temporary, and that code should be removed in favor of request'ifying
this function and removing the incrementally-built state entirely.
Separate swift-syntax libs for the compiler and for the library plugins.
Compiler communicates with library plugins using serialized messages
just like executable plugins.
* `lib/swift/host/compiler/lib_Compiler*.dylib`(`lib/CompilerSwiftSyntax`):
swift-syntax libraries for compiler. Library evolution is disabled.
* Compiler (`ASTGen` and `swiftIDEUtilsBridging`) only depends on
`lib/swift/host/compiler` libraries.
* `SwiftInProcPluginServer`: In-process plugin server shared library.
This has one `swift_inproc_plugins_handle_message` entry point that
receives a message and return the response.
* In the compiler
* Add `-in-process-plugin-server-path` front-end option, which specifies
the `SwiftInProcPluginServer` shared library path.
* Remove `LoadedLibraryPlugin`, because all library plugins are managed
by `SwiftInProcPluginServer`
* Introduce abstract `CompilerPlugin` class that has 2 subclasses:
* `LoadedExecutablePlugin` existing class that represents an
executable plugin
* `InProcessPlugins` wraps `dlopen`ed `SwiftInProcPluginServer`
* Unified the code path in `TypeCheckMacros.cpp` and `ASTGen`, the
difference between executable plugins and library plugins are now
abstracted by `CompilerPlugin`
`macro` declarations often appear in files that does not contain any
expansions (e.g. `.swiftinterface`). So invoking `SwiftParser` for the
entire file is a waste.
ASTGen always builds with the host Swift compiler, without requiring
bootstrapping, and is enabled in more places. Move the regex literal
parsing logic there so it is enabled in more host environments, and
makes use of CMake's Swift support. Enable all of the regex literal
tests when ASTGen is built, to ensure everything is working.
Remove the "AST" and "Parse" Swift modules from SwiftCompilerSources,
because they are no longer needed.
* 'ASTGenVisitor' has a reference to a legacy C++ Parser configured for
ASTGen.
* If 'ASTGenVisitor' encounters a AST node that hasn't been migrated,
call parse(Decl|Stmt|Expr|Type) to parse the position using the legacy
parser.
* The legacy parser calls ASTGen's
'swift_ASTGen_build(Decl|Stmt|Expr|Type)' for each ASTNode "parsing"
(unless the call is not directly from the ASTGen.)
rdar://117151886
Merge with BasicBridging and ASTBridging
respectively. The changes here should be pretty
uncontroversial, I tried to keep it to just moving
code about.