ModuleDecl kept track of all of the source files in the module so that it
could find the source file containing a given location, which relied on
a sorted array all of these source files. SourceManager has its own
similar data structure for a similar query mapping the locations to
buffer IDs.
Replace ModuleDecl's dats structure with a use of the SourceManager's version
with the mapping from buffer IDs to source files.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
* Factor out ASTContext plugin loading to newly introduced 'PluginLoader'
* Insert 'DependencyTracker' to 'PluginLoader'
* Add dependencies right before loading the plugins
rdar://104938481
Driver uses its path to derive the plugin paths (i.e.
'lib/swift/host/plugins' et al.) Previously it was a constant string
'swiftc' that caused SourceKit failed to find dylib plugins in the
toolchain. Since 'SwiftLangSupport' knows the swift-frontend path,
use it, but replacing the filename with 'swiftc', to derive the plugin
paths.
rdar://107849796
Make a single 'PluginRegistry' and share it between SwiftASTManager,
IDEInspectionInstance, and CompileInstance. And inject the plugin
registry to ASTContext right after 'CompilerInstance.setup()'
That way, all sema-capable ASTContext in SourceKit share a single
PluginRegistry.
Macro expansion buffers, along with other generated source buffers,
need more precise "original source ranges" that can be had with the
token-based `SourceRange`. Switch over to `CharSourceRange` and provide
more thoughtfully-determined original source ranges.
Each macro expansion buffer was getting parsed twice: once by
ParseSourceFileRequest (which is used by unqualified name lookup) and
once to parse the expression when type-checking the expanded macro.
This meant that the same code had two ASTs. Hilarity ensures.
Stop directly invoking the parser on macro-expanded code. Instead, go
through ParseSourceFileRequest *as is always the right way*, and dig
out the expression we want.
Establish the relationship for generated sources, whether for macro
expansions or (via a small stretch) replacing function bodies with
other bodies, in the source manager itself. This makes the information
available for diagnostic rendering, and unifies a little bit of the
representation, although it isn't used for much yet.
Introduce a new source file kind to describe source files for macro
expansions, and include the macro expression that they expand. This
establishes a "parent" relationship
Also track every kind of auxiliary source file---whether for macro
expansions or other reasons---that is introduced into a module, adding
an operation that allows us to find the source file that contains a
given source location.
These libraries formed a strongly connected component in the CMake build graph. The weakest link I could find was from IDE to FrontendTool and Frontend, which was necessitated by the `CompileInstance` class (https://github.com/apple/swift/pull/40645). I moved a few files out of IDE into a new IDETools library to break the cycle.